The dynamics equations of multibody systems are often expressed in the form of a system of highly nonlinear Differential Algebraic Equations (DAEs). Some applications of multibody dynamics, however, require a linear expression of the equations of motion. Such is the case of the plant representations demanded by a wide variety of control algorithms and the system models needed by state estimators like Kalman filters. The choice of generalized coordinates used to describe a mechanical system greatly influences the behavior of the resultant linearized models and the way in which they convey information about the original system dynamics. Several approaches to arrive at the linearized dynamics equations have been proposed in the literature. In this work, these were categorized into three major groups, defined by the way in which the kinematic constraints are handled. The properties of each approach and the differences between them were studied through the linearization of the dynamics of a simple example with a method representative of each class.

On the Linearization of Multibody Dynamics Formulations

MASARATI, PIERANGELO;
2016-01-01

Abstract

The dynamics equations of multibody systems are often expressed in the form of a system of highly nonlinear Differential Algebraic Equations (DAEs). Some applications of multibody dynamics, however, require a linear expression of the equations of motion. Such is the case of the plant representations demanded by a wide variety of control algorithms and the system models needed by state estimators like Kalman filters. The choice of generalized coordinates used to describe a mechanical system greatly influences the behavior of the resultant linearized models and the way in which they convey information about the original system dynamics. Several approaches to arrive at the linearized dynamics equations have been proposed in the literature. In this work, these were categorized into three major groups, defined by the way in which the kinematic constraints are handled. The properties of each approach and the differences between them were studied through the linearization of the dynamics of a simple example with a method representative of each class.
2016
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
978-079185018-3
File in questo prodotto:
File Dimensione Formato  
GONZF01-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/997797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact