We present a methodology that allows conditioning the spatial distribution of geological and petrophysical properties of reservoir model realizations on available production data. The approach is fully consistent with modern concepts depicting natural reservoirs as composite media where the distribution of both lithological units (or facies) and associated attributes are modeled as stochastic processes of space. We represent the uncertain spatial distribution of the facies through a Markov mesh (MM) model, which allows describing complex and detailed facies geometries in a rigorous Bayesian framework. The latter is then embedded within a history matching workflow based on an iterative form of the ensemble Kalman filter (EnKF). We test the proposed methodology by way of a synthetic study characterized by the presence of two distinct facies. We analyze the accuracy and computational efficiency of our algorithm and its ability with respect to the standard EnKF to properly estimate model parameters and assess future reservoir production. We show the feasibility of integrating MM in a data assimilation scheme. Our methodology is conducive to a set of updated model realizations characterized by a realistic spatial distribution of facies and their log permeabilities. Model realizations updated through our proposed algorithm correctly capture the production dynamics.

Integration of Markov mesh models and data assimilation techniques in complex reservoirs

PANZERI, MARCO;RIVA, MONICA;GUADAGNINI, ALBERTO
2016-01-01

Abstract

We present a methodology that allows conditioning the spatial distribution of geological and petrophysical properties of reservoir model realizations on available production data. The approach is fully consistent with modern concepts depicting natural reservoirs as composite media where the distribution of both lithological units (or facies) and associated attributes are modeled as stochastic processes of space. We represent the uncertain spatial distribution of the facies through a Markov mesh (MM) model, which allows describing complex and detailed facies geometries in a rigorous Bayesian framework. The latter is then embedded within a history matching workflow based on an iterative form of the ensemble Kalman filter (EnKF). We test the proposed methodology by way of a synthetic study characterized by the presence of two distinct facies. We analyze the accuracy and computational efficiency of our algorithm and its ability with respect to the standard EnKF to properly estimate model parameters and assess future reservoir production. We show the feasibility of integrating MM in a data assimilation scheme. Our methodology is conducive to a set of updated model realizations characterized by a realistic spatial distribution of facies and their log permeabilities. Model realizations updated through our proposed algorithm correctly capture the production dynamics.
2016
Data assimilation; Ensemble Kalman filter; Facies characterization; History matching; Markov mesh model; Computational Theory and Mathematics
File in questo prodotto:
File Dimensione Formato  
Panzeri et al 2016_comput_geosci.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 8.91 MB
Formato Adobe PDF
8.91 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/994665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact