The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.

Dynamical model of binary asteroid systems through patched three-body problems

FERRARI, FABIO;LAVAGNA, MICHÈLE;
2016-01-01

Abstract

The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.
2016
Astrodynamics; Binary asteroid; Gravity model; Mission analysis; NEA binary systems; Patched three-body problem; Surface of equivalence; Astronomy and Astrophysics; Space and Planetary Science
File in questo prodotto:
File Dimensione Formato  
FERRF01-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri
FERRF_OA_01-16.pdf

Open Access dal 06/04/2017

Descrizione: Paper open access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/990887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 16
social impact