In recent years, the videogame industry has been characterized by a great boost in gesture recognition and motion tracking, following the increasing request of creating immersive game experiences. The Microsoft Kinect sensor allows acquiring RGB, IR and depth images with a high frame rate. Because of the complementary nature of the information provided, it has proved an attractive resource for researchers with very different backgrounds. In summer 2014, Microsoft launched a new generation of Kinect on the market, based on time-of-flight technology. This paper proposes a calibration of Kinect for Xbox One imaging sensors, focusing on the depth camera. The mathematical model that describes the error committed by the sensor as a function of the distance between the sensor itself and the object has been estimated. All the analyses presented here have been conducted for both generations of Kinect, in order to quantify the improvements that characterize every single imaging sensor. Experimental results show that the quality of the delivered model improved applying the proposed calibration procedure, which is applicable to both point clouds and the mesh model created with the Microsoft Fusion Libraries.

Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors

PAGLIARI, DIANA;PINTO, LIVIO
2015

Abstract

In recent years, the videogame industry has been characterized by a great boost in gesture recognition and motion tracking, following the increasing request of creating immersive game experiences. The Microsoft Kinect sensor allows acquiring RGB, IR and depth images with a high frame rate. Because of the complementary nature of the information provided, it has proved an attractive resource for researchers with very different backgrounds. In summer 2014, Microsoft launched a new generation of Kinect on the market, based on time-of-flight technology. This paper proposes a calibration of Kinect for Xbox One imaging sensors, focusing on the depth camera. The mathematical model that describes the error committed by the sensor as a function of the distance between the sensor itself and the object has been estimated. All the analyses presented here have been conducted for both generations of Kinect, in order to quantify the improvements that characterize every single imaging sensor. Experimental results show that the quality of the delivered model improved applying the proposed calibration procedure, which is applicable to both point clouds and the mesh model created with the Microsoft Fusion Libraries.
Kinect; calibration; depth maps; distortion removal; RGB-D; fusion libraries
File in questo prodotto:
File Dimensione Formato  
sensors-15-27569.pdf

accesso aperto

: Publisher’s version
Dimensione 5.21 MB
Formato Adobe PDF
5.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/987636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 118
social impact