By experimenting on model colloids where depletion forces can be carefully tuned and quantified, we show that attractive interactions consistently “promote” particle settling, so much that the sedimentation velocity of a moderately concentrated dispersion can even exceed its single-particle value. At larger particle volume fraction ϕ, however, hydrodynamic hindrance eventually takes over. Hence, v(ϕ) actually displays a nonmonotonic trend that may threaten the stability of the settling front to thermal perturbations. Finally, by discussing a representative case, we show that these results are relevant to the investigation of protein association effects by ultracentrifugation.

Colloidal Swarms Can Settle Faster than Isolated Particles: Enhanced Sedimentation near Phase Separation

LATTUADA, ENRICO;BUZZACCARO, STEFANO;PIAZZA, ROBERTO
2016-01-01

Abstract

By experimenting on model colloids where depletion forces can be carefully tuned and quantified, we show that attractive interactions consistently “promote” particle settling, so much that the sedimentation velocity of a moderately concentrated dispersion can even exceed its single-particle value. At larger particle volume fraction ϕ, however, hydrodynamic hindrance eventually takes over. Hence, v(ϕ) actually displays a nonmonotonic trend that may threaten the stability of the settling front to thermal perturbations. Finally, by discussing a representative case, we show that these results are relevant to the investigation of protein association effects by ultracentrifugation.
2016
Physics and Astronomy (all)
File in questo prodotto:
File Dimensione Formato  
2016_PRL_Promoted Settling.pdf

accesso aperto

: Publisher’s version
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/986153
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact