Mechanical response of textile-reinforced aerated concrete sandwich panels was investigated using an instrumented three-point bending experiment under static and low-velocity dynamic loading. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric Fiber-Reinforced Aerated Concrete (FRAC) were used as the core material. Skin layer consisted of two layers of Alkali Resistant Glass (ARG) textiles and a cementitious binder. Performance of ductile skin-brittle core (TRC-AAC) and ductile skin-ductile core (TRC-FRAC) composites was evaluated in terms of flexural stiffness, strength, and energy absorption capacity. The effect of impact energy on the mechanical properties was measured at various drop heights on two different cross-sections using energy levels up to 40 J and intermediate strain rates up to 20 s(-1). The externally bonded textile layers significantly improved the mechanical properties of light-weight low-strength aerated concrete core under both loading modes. Dynamic flexural strength was greater than the static flexural strength by as much as 4 times. For specimens with larger cross-sections, unreinforced-autoclaved AAC core had a 15% higher apparent flexural capacity. With 0.5% volume of polypropylene fibers in the core, the flexural toughness however increased by 25%. Cracking mechanisms were studied using high speed image acquisition and digital image correlation (DIC) technique.

Flexural impact response of textile-reinforced aerated concrete sandwich panels

ZANI, GIULIO;COLOMBO, MATTEO;DI PRISCO, MARCO;
2015-01-01

Abstract

Mechanical response of textile-reinforced aerated concrete sandwich panels was investigated using an instrumented three-point bending experiment under static and low-velocity dynamic loading. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric Fiber-Reinforced Aerated Concrete (FRAC) were used as the core material. Skin layer consisted of two layers of Alkali Resistant Glass (ARG) textiles and a cementitious binder. Performance of ductile skin-brittle core (TRC-AAC) and ductile skin-ductile core (TRC-FRAC) composites was evaluated in terms of flexural stiffness, strength, and energy absorption capacity. The effect of impact energy on the mechanical properties was measured at various drop heights on two different cross-sections using energy levels up to 40 J and intermediate strain rates up to 20 s(-1). The externally bonded textile layers significantly improved the mechanical properties of light-weight low-strength aerated concrete core under both loading modes. Dynamic flexural strength was greater than the static flexural strength by as much as 4 times. For specimens with larger cross-sections, unreinforced-autoclaved AAC core had a 15% higher apparent flexural capacity. With 0.5% volume of polypropylene fibers in the core, the flexural toughness however increased by 25%. Cracking mechanisms were studied using high speed image acquisition and digital image correlation (DIC) technique.
2015
Aerated concrete; Crack propagation; Impact; Sandwich composites; Textile reinforced concrete; Mechanical Engineering; Mechanics of Materials; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
Barzin.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri
Flexural impact response of textile-reinforced aerated concrete sandwich panels_11311-986186_Colombo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.57 MB
Formato Adobe PDF
3.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/986135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 65
social impact