An understanding of the bubble properties, size distributions and shapes is of fundamental importance for comprehending flow dynamics and mass transfer phenomena in bubble column reactors. A large number of studies have focused on open tube bubble columns, and the knowledge concerning bubble columns with internals is still limited. This paper contributes to the existing discussion experimentally investigating a counter-current annular bubble column with 0.24. m inner diameter and two internal pipes. The experimental investigation consists in holdup measurements and image analysis. The former is used for identifying the flow regime transition and studying the bubble column hydrodynamics, whereas the latter is used for investigating the bubble shapes and size distributions. The definition of the transition point is important because the size distribution and bubble shapes depend on the operating conditions and a change of the bubble properties is expected near the transition. The image analysis is applied at different superficial gas and liquid velocities, corresponding to a gas holdup between 2.9% and 9.6%. It is difficult to measure bubble size distribution accurately in large-diameter bubble columns owing to the overlapping of bubbles, even at low void fractions, and-in an annular gap bubble column-the fact that cap bubbles have also been reported in the homogeneous flow regime. The use of a bubble image analysis method to study the bubbly flows in a large-diameter annular gap bubble column is described. In the proposed method, each bubble is approximated and reconstructed using an ellipse. The proposed approach is used to quantify the bubble size distribution, as well as to study the bubble shape and orientation as function of the superficial gas and liquid velocities. The experimental data obtained are used to develop a correlation between non-dimensional parameters and aspect ratios. Also, the experimental data are compared with non-dimensional diagrams from the literature, revealing good agreement. Finally, the image analysis is used for supporting the flow regime transition prediction in the stability analysis method: the virtual mass formulation is obtained by using the aspect ratio correlation provided by the image analysis. The stability analysis-supported by the image analysis-was able to predict the transition point in very good agreement with experimental data and performed better than literature correlations. © 2015 Elsevier Inc.
Bubble size distributions and shapes in annular gap bubble column
BESAGNI, GIORGIO;INZOLI, FABIO
2016-01-01
Abstract
An understanding of the bubble properties, size distributions and shapes is of fundamental importance for comprehending flow dynamics and mass transfer phenomena in bubble column reactors. A large number of studies have focused on open tube bubble columns, and the knowledge concerning bubble columns with internals is still limited. This paper contributes to the existing discussion experimentally investigating a counter-current annular bubble column with 0.24. m inner diameter and two internal pipes. The experimental investigation consists in holdup measurements and image analysis. The former is used for identifying the flow regime transition and studying the bubble column hydrodynamics, whereas the latter is used for investigating the bubble shapes and size distributions. The definition of the transition point is important because the size distribution and bubble shapes depend on the operating conditions and a change of the bubble properties is expected near the transition. The image analysis is applied at different superficial gas and liquid velocities, corresponding to a gas holdup between 2.9% and 9.6%. It is difficult to measure bubble size distribution accurately in large-diameter bubble columns owing to the overlapping of bubbles, even at low void fractions, and-in an annular gap bubble column-the fact that cap bubbles have also been reported in the homogeneous flow regime. The use of a bubble image analysis method to study the bubbly flows in a large-diameter annular gap bubble column is described. In the proposed method, each bubble is approximated and reconstructed using an ellipse. The proposed approach is used to quantify the bubble size distribution, as well as to study the bubble shape and orientation as function of the superficial gas and liquid velocities. The experimental data obtained are used to develop a correlation between non-dimensional parameters and aspect ratios. Also, the experimental data are compared with non-dimensional diagrams from the literature, revealing good agreement. Finally, the image analysis is used for supporting the flow regime transition prediction in the stability analysis method: the virtual mass formulation is obtained by using the aspect ratio correlation provided by the image analysis. The stability analysis-supported by the image analysis-was able to predict the transition point in very good agreement with experimental data and performed better than literature correlations. © 2015 Elsevier Inc.File | Dimensione | Formato | |
---|---|---|---|
ETFS_BesagniInzoli.pdf
Accesso riservato
Descrizione: ETFS Besagni Inzoli
:
Publisher’s version
Dimensione
5.17 MB
Formato
Adobe PDF
|
5.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.