We perform a proof-of-principle demonstration of chemically specific standoff gas sensing, in which a coherent stimulated Raman signal is detected in the direction anticollinear to a two-color laser excitation beam traversing the target volume. The proposed geometry is intrinsically free space as it does not involve back-scattering (reflection) of the signal or excitation beams at or behind the target. A beam carrying an intense mid-IR femtosecond (fs) pulse and a parametrically generated picosecond (ps) UV Stokes pulse is fired in the forward direction. A fs filament, produced by the intense mid-IR pulse, emits a backward-propagating narrowband ps laser pulse at the 337 and 357 nm transitions of excited molecular nitrogen, thus supplying a counter-propagating Raman pump pulse. The scheme is linearly sensitive to species concentration and provides both transverse and longitudinal spatial resolution.

Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament

MARANGONI, MARCO ANDREA;CERULLO, GIULIO NICOLA;
2015-01-01

Abstract

We perform a proof-of-principle demonstration of chemically specific standoff gas sensing, in which a coherent stimulated Raman signal is detected in the direction anticollinear to a two-color laser excitation beam traversing the target volume. The proposed geometry is intrinsically free space as it does not involve back-scattering (reflection) of the signal or excitation beams at or behind the target. A beam carrying an intense mid-IR femtosecond (fs) pulse and a parametrically generated picosecond (ps) UV Stokes pulse is fired in the forward direction. A fs filament, produced by the intense mid-IR pulse, emits a backward-propagating narrowband ps laser pulse at the 337 and 357 nm transitions of excited molecular nitrogen, thus supplying a counter-propagating Raman pump pulse. The scheme is linearly sensitive to species concentration and provides both transverse and longitudinal spatial resolution.
2015
File in questo prodotto:
File Dimensione Formato  
Product 2 preprint.pdf

accesso aperto

Descrizione: Articolo principale
: Pre-Print (o Pre-Refereeing)
Dimensione 484.35 kB
Formato Adobe PDF
484.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/983872
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 52
social impact