Mg batteries have received increasing attention mainly because of their high volumetric capacity (3832 mAhcm−3). In order to form type NO.5 cell packing for Magnesium battery the finite element simulation by Deform 3D was carried out. Then backward extrusion was conducted on an AZ31 magnesium alloy at 300°C. The results show that battery cell packing with the wall of 0.35 mm can be formed through backward extrusion with an AZ31 Mg alloys. A significant grain size refining was resulted from hot BE, however, the microstructure in different positions of the Mg cell packing was inhomogeneous. At bottom of the packing, the microstructure was formed by equiaxial and relatively coarse grains. The wall of the Mg cell packing was made of much finer grains.
Forming of the Battery Cell Packing in Extruded AZ31 Magnesium Alloys through Backward Extrusion
VEDANI, MAURIZIO
2015-01-01
Abstract
Mg batteries have received increasing attention mainly because of their high volumetric capacity (3832 mAhcm−3). In order to form type NO.5 cell packing for Magnesium battery the finite element simulation by Deform 3D was carried out. Then backward extrusion was conducted on an AZ31 magnesium alloy at 300°C. The results show that battery cell packing with the wall of 0.35 mm can be formed through backward extrusion with an AZ31 Mg alloys. A significant grain size refining was resulted from hot BE, however, the microstructure in different positions of the Mg cell packing was inhomogeneous. At bottom of the packing, the microstructure was formed by equiaxial and relatively coarse grains. The wall of the Mg cell packing was made of much finer grains.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.