The exploitation of the mm-wave bands is one of the most promising solutions for 5G mobile radio networks. However, the use of mm-wave technologies in cellular networks is not straightforward due to mm-wave harsh propagation conditions that limit access availability. In order to overcome this obstacle, hybrid network architectures are being considered where mmwave small cells can exploit an overlay coverage layer based on legacy technology. The additional mm-wave layer can also take advantage of a functional split between control and user plane, that allows to delegate most of the signaling functions to legacy base stations and to gather context information from users for resource optimization. However, mm-wave technology requires high gain antenna systems to compensate for high path loss and limited power, e.g., through the use of multiple antennas for high directivity. Directional transmissions must be also used for the cell discovery and synchronization process, and this can lead to a non-negligible delay due to the need to scan the cell area with multiple transmissions at different directions. In this paper, we propose to exploit the context information related to user position, provided by the separated control plane, to improve the cell discovery procedure and minimize delay. We investigate the fundamental trade-offs of the cell discovery process with directional antennas and the effects of the context information accuracy on its performance. Numerical results are provided to validate our observations.
Context Information for Fast Cell Discovery in mm-wave 5G Networks
CAPONE, ANTONIO;FILIPPINI, ILARIO;
2015-01-01
Abstract
The exploitation of the mm-wave bands is one of the most promising solutions for 5G mobile radio networks. However, the use of mm-wave technologies in cellular networks is not straightforward due to mm-wave harsh propagation conditions that limit access availability. In order to overcome this obstacle, hybrid network architectures are being considered where mmwave small cells can exploit an overlay coverage layer based on legacy technology. The additional mm-wave layer can also take advantage of a functional split between control and user plane, that allows to delegate most of the signaling functions to legacy base stations and to gather context information from users for resource optimization. However, mm-wave technology requires high gain antenna systems to compensate for high path loss and limited power, e.g., through the use of multiple antennas for high directivity. Directional transmissions must be also used for the cell discovery and synchronization process, and this can lead to a non-negligible delay due to the need to scan the cell area with multiple transmissions at different directions. In this paper, we propose to exploit the context information related to user position, provided by the separated control plane, to improve the cell discovery procedure and minimize delay. We investigate the fundamental trade-offs of the cell discovery process with directional antennas and the effects of the context information accuracy on its performance. Numerical results are provided to validate our observations.File | Dimensione | Formato | |
---|---|---|---|
EW2015.pdf
Accesso riservato
:
Pre-Print (o Pre-Refereeing)
Dimensione
332.4 kB
Formato
Adobe PDF
|
332.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.