A number of recent reports in the peer-reviewed literature have discussed irreproducibility of results in biomedical research. Some of these articles suggest that the inability of independent research laboratories to replicate published results has a negative impact on the development of, and confidence in, the biomedical research enterprise. To get more resilient data and to achieve higher reproducible result, we present an adaptive and learning system reference architecture for smart learning system interface. To get deeper inspiration, we focus our attention on mammalian brain neurophysiology. In fact, from a neurophysiological point of view, neuroscientist LeDoux finds two preferential amygdala pathways in the brain of the laboratory mouse. The low road is a pathway which is able to transmit a signal from a stimulus to the thalamus, and then to the amygdala, which then activates a fast-response in the body. The high road is activated simultaneously. This is a slower road which also includes the cortical parts of the brain, thus creating a conscious impression of what the stimulus is (to develop a rational mechanism of defense for instance). To mimic this biological reality, our main idea is to use a new input node able to bind known information to the unknown one coherently. Then, unknown "environmental noise" or/and local "signal input" information can be aggregated to known "system internal control status" information, to provide a landscape of attractor points, which either fast or slow and deeper system response can computed from. In this way, ideal cybernetics system interaction levels can be matched exactly to practical system modeling interaction styles, with no paradigmatic operational ambiguity and minimal information loss. The present paper is a relevant contribute to classic cybernetics updating towards a new General Theory of Systems, a post-Bertalanffy Systemics.

A Cybernetics Update for Competitive Deep Learning System

FIORINI, RODOLFO
2015-01-01

Abstract

A number of recent reports in the peer-reviewed literature have discussed irreproducibility of results in biomedical research. Some of these articles suggest that the inability of independent research laboratories to replicate published results has a negative impact on the development of, and confidence in, the biomedical research enterprise. To get more resilient data and to achieve higher reproducible result, we present an adaptive and learning system reference architecture for smart learning system interface. To get deeper inspiration, we focus our attention on mammalian brain neurophysiology. In fact, from a neurophysiological point of view, neuroscientist LeDoux finds two preferential amygdala pathways in the brain of the laboratory mouse. The low road is a pathway which is able to transmit a signal from a stimulus to the thalamus, and then to the amygdala, which then activates a fast-response in the body. The high road is activated simultaneously. This is a slower road which also includes the cortical parts of the brain, thus creating a conscious impression of what the stimulus is (to develop a rational mechanism of defense for instance). To mimic this biological reality, our main idea is to use a new input node able to bind known information to the unknown one coherently. Then, unknown "environmental noise" or/and local "signal input" information can be aggregated to known "system internal control status" information, to provide a landscape of attractor points, which either fast or slow and deeper system response can computed from. In this way, ideal cybernetics system interaction levels can be matched exactly to practical system modeling interaction styles, with no paradigmatic operational ambiguity and minimal information loss. The present paper is a relevant contribute to classic cybernetics updating towards a new General Theory of Systems, a post-Bertalanffy Systemics.
2015
Proceedings of the 2nd International Conference on Entropy and Its Applications
cybernetics, man–machine interfaces, model, simulation, computational information conservation theory, CICT, post-Bertalanffy Systemics.
File in questo prodotto:
File Dimensione Formato  
ecea-2_3277_manuscript.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/983392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact