This paper investigates different strategies for the reduction of peak heat fluxes on the receiver of a solar tower plant through the variation of the heliostats aiming points. The analysis is performed for two different solar tower receivers and heliostat field layouts. The innovative aspect of the work is in the methodology proposed: the effect of different aiming points is evaluated at different sun positions, and the yearly optical efficiency is calculated to determine drawbacks in terms of energy production. The optical simulation of the solar plant is performed with delsol through a matlab suite to easily manage the input and output. Preliminary assessments showed that the most important displacement is the vertical one, and the variation of the aiming point is important for the rows that are closer to the tower. With the appropriate strategy, the peak heat flux can be reduced by about 40% with limited spillage increase compared to the reference case. This result is similar for the two investigated plants, and it is confirmed also at different sun positions. The yearly optical efficiency with the optimal aiming strategy is reduced by less than 0.5% points. Future analysis will assess potential cost reductions and thermal efficiency increase brought about by the proposed strategies. Copyright © 2016 by ASME.

Comparison of Different Strategies for Heliostats Aiming Point in Cavity and External Tower Receivers

BINOTTI, MARCO;MANZOLINI, GIAMPAOLO
2016-01-01

Abstract

This paper investigates different strategies for the reduction of peak heat fluxes on the receiver of a solar tower plant through the variation of the heliostats aiming points. The analysis is performed for two different solar tower receivers and heliostat field layouts. The innovative aspect of the work is in the methodology proposed: the effect of different aiming points is evaluated at different sun positions, and the yearly optical efficiency is calculated to determine drawbacks in terms of energy production. The optical simulation of the solar plant is performed with delsol through a matlab suite to easily manage the input and output. Preliminary assessments showed that the most important displacement is the vertical one, and the variation of the aiming point is important for the rows that are closer to the tower. With the appropriate strategy, the peak heat flux can be reduced by about 40% with limited spillage increase compared to the reference case. This result is similar for the two investigated plants, and it is confirmed also at different sun positions. The yearly optical efficiency with the optimal aiming strategy is reduced by less than 0.5% points. Future analysis will assess potential cost reductions and thermal efficiency increase brought about by the proposed strategies. Copyright © 2016 by ASME.
2016
heliostat aiming point; solar tower plants; spillage losses; yearly optical efficiency; Energy Engineering and Power Technology; Renewable Energy, Sustainability and the Environment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/983112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact