Bonding between a metal foam core and a metallic skin is a pre requisite for the technological application of aluminum foam as filling reinforcement material to improve energy absorption and vibration damping of hollow components. This work is a preliminary study for the microstructural characterization of the interface layer formed between a commercial powder metallurgy (PM) precursor and a steel mould during foaming. The microstructure of the intermetallic layer was characterized by scanning electron microscopy, electron probe microanalysis and nanohardness measurements on the cross section. X-ray diffraction measurements, performed on the foam/substrate surface after stepwise material removal, allow the identification of the intermetallic phases. Two intermetallic layers, identified as Fe2Al5 and FeAl3, characterize the low Si foam/substrate while the AlSi10 foam/substrate interface evidences the presence of three Fe(Si, Al) intermetallic layers with different composition. Two and three different phases of increasing hardness could be distinguished going from the foam to the steel substrate for AlMg1Si0.6 and AlSi10 precursors respectively. The results suggest the importance of elemental diffusion from steel substrate in the molten aluminum matrix (foam). The possibility to control and tailor the microstructural properties of the interface between foam and steel skin is of fundamental importance in the technological process of foam filled structures manufacturing.
Microstructural Study of the Intermetallic Bonding Between Al Foam and Low Carbon Steel
MONNO, MICHELE;MUSSI, VALERIO;NEGRI, DANIELA;ZAMPORI, LUCA;DOTELLI, GIOVANNI
2013-01-01
Abstract
Bonding between a metal foam core and a metallic skin is a pre requisite for the technological application of aluminum foam as filling reinforcement material to improve energy absorption and vibration damping of hollow components. This work is a preliminary study for the microstructural characterization of the interface layer formed between a commercial powder metallurgy (PM) precursor and a steel mould during foaming. The microstructure of the intermetallic layer was characterized by scanning electron microscopy, electron probe microanalysis and nanohardness measurements on the cross section. X-ray diffraction measurements, performed on the foam/substrate surface after stepwise material removal, allow the identification of the intermetallic phases. Two intermetallic layers, identified as Fe2Al5 and FeAl3, characterize the low Si foam/substrate while the AlSi10 foam/substrate interface evidences the presence of three Fe(Si, Al) intermetallic layers with different composition. Two and three different phases of increasing hardness could be distinguished going from the foam to the steel substrate for AlMg1Si0.6 and AlSi10 precursors respectively. The results suggest the importance of elemental diffusion from steel substrate in the molten aluminum matrix (foam). The possibility to control and tailor the microstructural properties of the interface between foam and steel skin is of fundamental importance in the technological process of foam filled structures manufacturing.File | Dimensione | Formato | |
---|---|---|---|
Microstructural Study of the Intermetallic Bonding Between Al Foam and Low Carbon Steel.pdf
accesso aperto
Descrizione: Paper definitivo
:
Publisher’s version
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.