The paper presents the main results of the serviceability assessment of a lively suspension footbridge. An ambient vibration test was firstly developed on July 2012 using conventional accelerometers with the objective of identifying the baseline dynamic characteristics of the structure; subsequently, groups of volunteers (up to 32 adults) simulated normal walking and running at different step rates along the deck and the human-induced vibrations were simultaneously measured by accelerometers and microwave interferometer. The deflection responses recorded by the microwave interferometer suggested the exceeding of comfort criteria threshold and this result was confirmed by the acceleration levels directly measured by accelerometers or derived from the (radar) displacement data. Furthermore, a second ambient vibration test was performed in Autumn 2012 using only the microwave interferometer: the natural frequencies of the footbridge generally exhibited not negligible variations, that were conceivably associated to the change of suspension forces induced by temperature, so that special care is suggested in the design of the devices aimed at mitigating the excess of human induced vibrations observed in the footbridge.

Dynamic investigation of a suspension footbridge using accelerometers and microwave interferometer

GENTILE, CARMELO
2015-01-01

Abstract

The paper presents the main results of the serviceability assessment of a lively suspension footbridge. An ambient vibration test was firstly developed on July 2012 using conventional accelerometers with the objective of identifying the baseline dynamic characteristics of the structure; subsequently, groups of volunteers (up to 32 adults) simulated normal walking and running at different step rates along the deck and the human-induced vibrations were simultaneously measured by accelerometers and microwave interferometer. The deflection responses recorded by the microwave interferometer suggested the exceeding of comfort criteria threshold and this result was confirmed by the acceleration levels directly measured by accelerometers or derived from the (radar) displacement data. Furthermore, a second ambient vibration test was performed in Autumn 2012 using only the microwave interferometer: the natural frequencies of the footbridge generally exhibited not negligible variations, that were conceivably associated to the change of suspension forces induced by temperature, so that special care is suggested in the design of the devices aimed at mitigating the excess of human induced vibrations observed in the footbridge.
2015
MATEC Web of Conferences
Chemistry (all); Engineering (all); Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
matecconf_evaces2015_07004.pdf

accesso aperto

: Publisher’s version
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/982075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact