We present experimental investigations of two-phase (oil and water) relative permeability of laboratory scale rock cores through a joint use of direct X-ray measurement and flow-through investigations. The study is motivated by the observation that appropriate modeling of oil and water displacement in porous media or fractured rocks requires to be firmly grounded on accurate and representative core flood experiments and their appropriate interpretation. Experimental data embed key information relating relative permeability to observables. In this context, direct measurement of in-situ fluid saturation through X-Ray techniques has the unprecedented ability to characterize key processes occurring during the displacement of immiscible fluids through natural permeable materials. Water saturation profiles determined by X-ray scanner can then be linked to relative permeability curves stemming from two-phase flow experiments. We illustrate the benefit of employing direct X-Ray measurements of fluid saturation through a set of laboratory experiments targeted to the estimate of two-phase relative permeabilities of homogeneous samples (sand pack and Berea sandston core). Data are obtained for a range of diverse fractional flow rates and provide information at saturations ranging from irreducible water content to residual oil saturation. Our X-Ray saturation data are consistent with an interpretation of measured relative permeabilities as associated with water-wet rock conditions. The comparison of different preamble samples result high displacement efficiency and recovery factor corresponds to the high permeable and well-connected pores.

Laboratory-scale Investigation of Two-phase Relative Permeability

MOGHADASI, LEILI;GUADAGNINI, ALBERTO;INZOLI, FABIO;
2015-01-01

Abstract

We present experimental investigations of two-phase (oil and water) relative permeability of laboratory scale rock cores through a joint use of direct X-ray measurement and flow-through investigations. The study is motivated by the observation that appropriate modeling of oil and water displacement in porous media or fractured rocks requires to be firmly grounded on accurate and representative core flood experiments and their appropriate interpretation. Experimental data embed key information relating relative permeability to observables. In this context, direct measurement of in-situ fluid saturation through X-Ray techniques has the unprecedented ability to characterize key processes occurring during the displacement of immiscible fluids through natural permeable materials. Water saturation profiles determined by X-ray scanner can then be linked to relative permeability curves stemming from two-phase flow experiments. We illustrate the benefit of employing direct X-Ray measurements of fluid saturation through a set of laboratory experiments targeted to the estimate of two-phase relative permeabilities of homogeneous samples (sand pack and Berea sandston core). Data are obtained for a range of diverse fractional flow rates and provide information at saturations ranging from irreducible water content to residual oil saturation. Our X-Ray saturation data are consistent with an interpretation of measured relative permeabilities as associated with water-wet rock conditions. The comparison of different preamble samples result high displacement efficiency and recovery factor corresponds to the high permeable and well-connected pores.
2015
Porous Media; Two-phase Relative Permeability; X-ray Saturation Measurement; Laboratory Experiments
File in questo prodotto:
File Dimensione Formato  
2015 - Moghadasi et al (Proc Env Sci - IAHR PG 2015).pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 670.15 kB
Formato Adobe PDF
670.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/982066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact