Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for pdf mapping through nonlinear transformations. In this way the mapping is obtained in an elegant and general fashion. The proposed approach is applied to both anglesonly and two position vectors IOD for objects in LEO and GEO.

Probabilistic Initial Orbit Determination

ARMELLIN, ROBERTO;DI LIZIA, PIERLUIGI
2016-01-01

Abstract

Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for pdf mapping through nonlinear transformations. In this way the mapping is obtained in an elegant and general fashion. The proposed approach is applied to both anglesonly and two position vectors IOD for objects in LEO and GEO.
2016
Spaceflight Mechanics 2016
978-0-87703-633-3
File in questo prodotto:
File Dimensione Formato  
ARMER01-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/979367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact