Silicon is a very attractive Li-ion battery anode material due to its high theoretical capacity, but proper nanostructuring is needed to accommodate the large volume expansion/shrinkage upon reversible cycling. Hereby, novel mesoporous Si nanostructures are grown at room temperature by simple and rapid Pulsed Laser Deposition (PLD) directly on top of the Cu current collector surface. The samples are characterised from the structural/morphological viewpoint and their promising electrochemical behaviour demonstrated in lab-scale lithium cells. Depending on the porosity, easily tuneable by PLD, specific capacities approaching 250 μAh cm−2 are obtained. Successively, newly elaborated bicomponent silicon/carbon nanostructures are fabricated in one step by alternating PLD deposition of Si and C, thus resulting in novel multi-layered composite mesoporous films exhibiting profoundly improved performance. Alternated deposition of Si/C layers by PLD is proven to be a straightforward method to produce multi-layered anodes in one processing step. The addition of carbon and mild annealing at 400 °C stabilize the electrochemical performance of the Si based nanostructures in lab-scale lithium cells, allowing to reach very stable prolonged reversible cycling at improved specific capacity values. This opens the way to further reducing processing steps and processing time, which are key aspects when upscaling is sought.
Mesoporous Si and multi-layered Si/C films by Pulsed Laser Deposition as Li-ion microbattery anodes
BISERNI, ERIKA;LI BASSI, ANDREA;
2015-01-01
Abstract
Silicon is a very attractive Li-ion battery anode material due to its high theoretical capacity, but proper nanostructuring is needed to accommodate the large volume expansion/shrinkage upon reversible cycling. Hereby, novel mesoporous Si nanostructures are grown at room temperature by simple and rapid Pulsed Laser Deposition (PLD) directly on top of the Cu current collector surface. The samples are characterised from the structural/morphological viewpoint and their promising electrochemical behaviour demonstrated in lab-scale lithium cells. Depending on the porosity, easily tuneable by PLD, specific capacities approaching 250 μAh cm−2 are obtained. Successively, newly elaborated bicomponent silicon/carbon nanostructures are fabricated in one step by alternating PLD deposition of Si and C, thus resulting in novel multi-layered composite mesoporous films exhibiting profoundly improved performance. Alternated deposition of Si/C layers by PLD is proven to be a straightforward method to produce multi-layered anodes in one processing step. The addition of carbon and mild annealing at 400 °C stabilize the electrochemical performance of the Si based nanostructures in lab-scale lithium cells, allowing to reach very stable prolonged reversible cycling at improved specific capacity values. This opens the way to further reducing processing steps and processing time, which are key aspects when upscaling is sought.File | Dimensione | Formato | |
---|---|---|---|
manuscript_revised_EB.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
602.14 kB
Formato
Adobe PDF
|
602.14 kB | Adobe PDF | Visualizza/Apri |
Garino_JECS2015.pdf
Accesso riservato
:
Publisher’s version
Dimensione
970.03 kB
Formato
Adobe PDF
|
970.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.