Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between the increment in the gross electrical efficiency and the lower slope of decrement in the auxiliary losses. The obtained results are suitable to be employed to assess the performance of the overall tri-generative system, conducted in the second part of the study, while meeting intermittent load profiles.

A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel - Part A: Fuel cell system modelling and partial load analysis

NAJAFI, BEHZAD;DE ANTONELLIS, STEFANO;INTINI, MANUEL;ZAGO, MATTEO;RINALDI, FABIO;CASALEGNO, ANDREA
2015-01-01

Abstract

Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between the increment in the gross electrical efficiency and the lower slope of decrement in the auxiliary losses. The obtained results are suitable to be employed to assess the performance of the overall tri-generative system, conducted in the second part of the study, while meeting intermittent load profiles.
2015
Tri-generation, Fuel cell, Proton exchange membrane, Fuel processor, Partial load analysis
File in questo prodotto:
File Dimensione Formato  
A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel - Part A - Fuel cell system modelling and partial load analysis.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri
A tri-generation system based on polymer electrolyte fuel cell-Part A-Fuel cell system modelling and partial load analysis_11311-978776_Molinaroli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/978776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact