This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings can be potentially achieved if PEMFC system and auxiliary devices are properly improved.

A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel - Part B: Overall system design and energy performance analysis

INTINI, MANUEL;DE ANTONELLIS, STEFANO;JOPPOLO, CESARE MARIA;CASALEGNO, ANDREA
2015-01-01

Abstract

This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings can be potentially achieved if PEMFC system and auxiliary devices are properly improved.
2015
Trigeneration, PEMFC, Fuel cell, Desiccant wheel, Primary energy saving
File in questo prodotto:
File Dimensione Formato  
A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel - Part B - Overall system design and energy performance analysis.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri
A trigeneration system based on polymer electrolyte fuel cell-Part B-Overall system design and energy performance analysis_11311-978763_Intini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/978763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact