This work addresses the problem of characterizing the spatial field of soil particle-size distributions within a heterogeneous aquifer system. The medium is conceptualized as a composite system, characterized by spatially varying soil textural properties associated with diverse geomaterials. The heterogeneity of the system is modeled through an original hierarchical model for particle-size distributions that are here interpreted as points in the Bayes space of functional compositions. This theoretical framework allows performing spatial prediction of functional compositions through a functional compositional Class-Kriging predictor. To tackle the problem of lack of information arising when the spatial arrangement of soil types is unobserved, a novel clustering method is proposed, allowing to infer a grouping structure from sampled particle-size distributions. The proposed methodology enables one to project the complete information content embedded in the set of heterogeneous particle-size distributions to unsampled locations in the system. These developments are tested on a field application relying on a set of particle-size data observed within an alluvial aquifer in the Neckar river valley, in Germany.
A Class-Kriging predictor for Functional Compositions with Application to Particle-Size Curves in Heterogeneous Aquifers
MENAFOGLIO, ALESSANDRA;SECCHI, PIERCESARE;GUADAGNINI, ALBERTO
2016-01-01
Abstract
This work addresses the problem of characterizing the spatial field of soil particle-size distributions within a heterogeneous aquifer system. The medium is conceptualized as a composite system, characterized by spatially varying soil textural properties associated with diverse geomaterials. The heterogeneity of the system is modeled through an original hierarchical model for particle-size distributions that are here interpreted as points in the Bayes space of functional compositions. This theoretical framework allows performing spatial prediction of functional compositions through a functional compositional Class-Kriging predictor. To tackle the problem of lack of information arising when the spatial arrangement of soil types is unobserved, a novel clustering method is proposed, allowing to infer a grouping structure from sampled particle-size distributions. The proposed methodology enables one to project the complete information content embedded in the set of heterogeneous particle-size distributions to unsampled locations in the system. These developments are tested on a field application relying on a set of particle-size data observed within an alluvial aquifer in the Neckar river valley, in Germany.File | Dimensione | Formato | |
---|---|---|---|
3D_paper_final.pdf
Open Access dal 22/11/2016
Descrizione: Articolo principale
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.01 MB
Formato
Adobe PDF
|
3.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.