CMOS technology improvement allows to increase the number of cores integrated on a single chip and makes Network-on-Chips (NoCs) a key component from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stressmigration, that are crucial in achieving acceptable component lifetime. Process variation complicates the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel sensor-less methodology to reduce the NBTI degradation in the on-chip network virtual channel buffers, considering process variation effects as well. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-wise approach used as reference golden model. The proposed sensor-less strategy achieves results within 25% to the optimal sensor-wise methodology while this gap is reduced around 10% decreasing the number of virtual channels per input port. Moreover, our proposal can mitigate NBTI impact both in short and long run, since we recover both the most degraded VC (short run) as well as all the other VCs (long term).

A sensor-less NBTI mitigation methodology for NoC architectures

ZONI, DAVIDE;FORNACIARI, WILLIAM
2012

Abstract

CMOS technology improvement allows to increase the number of cores integrated on a single chip and makes Network-on-Chips (NoCs) a key component from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stressmigration, that are crucial in achieving acceptable component lifetime. Process variation complicates the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel sensor-less methodology to reduce the NBTI degradation in the on-chip network virtual channel buffers, considering process variation effects as well. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-wise approach used as reference golden model. The proposed sensor-less strategy achieves results within 25% to the optimal sensor-wise methodology while this gap is reduced around 10% decreasing the number of virtual channels per input port. Moreover, our proposal can mitigate NBTI impact both in short and long run, since we recover both the most degraded VC (short run) as well as all the other VCs (long term).
SOC Conference (SOCC), 2012 IEEE International
Multi-core, Network-on-Chip, Reliability, NBTI
File in questo prodotto:
File Dimensione Formato  
socc2012.pdf

accesso aperto

Descrizione: main document
: Publisher’s version
Dimensione 187.15 kB
Formato Adobe PDF
187.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/976764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact