Approximate expressions for the macroscopic out-of-plane elastic coefficients of brick masonry with a regular pattern are derived in closed form using a homogenization approach for periodic media. Following an approach similar to the Method of Cells for fiber reinforced composites, a (piecewise-)differentiable expression depending on very a limited number of degrees of freedom and fulfilling suitable periodicity conditions is proposed for the microscopic transverse displacement field over any Representative Volume Element (RVE). Some of the equilibrium conditions at the interfaces between bricks and mortar joints are also fulfilled. By averaging the moment and curvature fields over the RVE, the macroscopic bending stiffness coefficients can be explicitly obtained. Using the FE solution of a masonry panel subjected to elementary load conditions as a benchmark, the proposed approach is found to accurately match the numerically obtained stiffness coefficients, for masonry elements of different geometry and different mechanical properties. In several instances, the proposed expressions agree with the numerical predictions better than other analytical expressions available in the literature.

Closed-form expressions for the macroscopic flexural rigidity coefficients of periodic brickwork

TALIERCIO, ALBERTO
2016-01-01

Abstract

Approximate expressions for the macroscopic out-of-plane elastic coefficients of brick masonry with a regular pattern are derived in closed form using a homogenization approach for periodic media. Following an approach similar to the Method of Cells for fiber reinforced composites, a (piecewise-)differentiable expression depending on very a limited number of degrees of freedom and fulfilling suitable periodicity conditions is proposed for the microscopic transverse displacement field over any Representative Volume Element (RVE). Some of the equilibrium conditions at the interfaces between bricks and mortar joints are also fulfilled. By averaging the moment and curvature fields over the RVE, the macroscopic bending stiffness coefficients can be explicitly obtained. Using the FE solution of a masonry panel subjected to elementary load conditions as a benchmark, the proposed approach is found to accurately match the numerically obtained stiffness coefficients, for masonry elements of different geometry and different mechanical properties. In several instances, the proposed expressions agree with the numerical predictions better than other analytical expressions available in the literature.
2016
homogenization, macroscopic stiffness, transverse loads, out-of-plane
File in questo prodotto:
File Dimensione Formato  
ViewPageProof_MRC_3026.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/973947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact