Urban reconstruction from a video captured by a surveying vehicle constitutes a core module of automated mapping. When computational power represents a limited resource and, a detailed map is not the primary goal, the reconstruction can be performed incrementally, from a monocular video, carving a 3D Delaunay triangulation of sparse points; this allows online incremental mapping for tasks such as traversability analysis or obstacle avoidance. To exploit the sharp edges of urban landscape, we propose to use a Delaunay triangulation of Edge-Points, which are the 3D points corresponding to image edges. These points constrain the edges of the 3D Delaunay triangulation to real-world edges. Besides the use of the Edge-Points, a second contribution of this paper is the Inverse Cone Heuristic that preemptively avoids the creation of artifacts in the reconstructed manifold surface. We force the reconstruction of a manifold surface since it makes it possible to apply computer graphics or photometric refinement algorithms to the output mesh. We evaluated our approach on four real sequences of the public available KITTI dataset by comparing the incremental reconstruction against Velodyne measurements.

Incremental Reconstruction of Urban Environments by Edge-Points Delaunay Triangulation

ROMANONI, ANDREA;MATTEUCCI, MATTEO
2015-01-01

Abstract

Urban reconstruction from a video captured by a surveying vehicle constitutes a core module of automated mapping. When computational power represents a limited resource and, a detailed map is not the primary goal, the reconstruction can be performed incrementally, from a monocular video, carving a 3D Delaunay triangulation of sparse points; this allows online incremental mapping for tasks such as traversability analysis or obstacle avoidance. To exploit the sharp edges of urban landscape, we propose to use a Delaunay triangulation of Edge-Points, which are the 3D points corresponding to image edges. These points constrain the edges of the 3D Delaunay triangulation to real-world edges. Besides the use of the Edge-Points, a second contribution of this paper is the Inverse Cone Heuristic that preemptively avoids the creation of artifacts in the reconstructed manifold surface. We force the reconstruction of a manifold surface since it makes it possible to apply computer graphics or photometric refinement algorithms to the output mesh. We evaluated our approach on four real sequences of the public available KITTI dataset by comparing the incremental reconstruction against Velodyne measurements.
2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2015
978-147999994-1
3D reconstruction, manifold, mapping, reconstruction from sparse point cloud
File in questo prodotto:
File Dimensione Formato  
07354012.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/972021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 13
social impact