Non-ideal compressible fluid dynamics (NICFD) are defined as compressible fluid flows occurring in the dense vapour, dense vapour-liquid equilibrium or supercritical thermodynamic region. This type of flow can occur in expanders of organic Rankine cycle power plants. In order to study NICFD, a Ludwieg tube-type facility has been designed and constructed at Delft University of Technology. A large variety of fluids can be employed in the facility, but for this study D6 siloxane is chosen as working fluid due to its high thermal stability and the possibility of encountering non-classical gasdynamic phenomena. This compound belongs to the siloxane class, which are also used as working fluids in ORC power systems. Gasdynamic experiments within the NICFD region are presented from which the wave speed and speed of sound can be inferred using the time-of-flight technique. These data can be used to improve and validate thermodynamic models.

Wave Speed Measurements in Non-Ideal Compressible Flows Using the Flexible Asymmetric Shock Tube (FAST)

GUARDONE, ALBERTO MATTEO ATTILIO;
2015-01-01

Abstract

Non-ideal compressible fluid dynamics (NICFD) are defined as compressible fluid flows occurring in the dense vapour, dense vapour-liquid equilibrium or supercritical thermodynamic region. This type of flow can occur in expanders of organic Rankine cycle power plants. In order to study NICFD, a Ludwieg tube-type facility has been designed and constructed at Delft University of Technology. A large variety of fluids can be employed in the facility, but for this study D6 siloxane is chosen as working fluid due to its high thermal stability and the possibility of encountering non-classical gasdynamic phenomena. This compound belongs to the siloxane class, which are also used as working fluids in ORC power systems. Gasdynamic experiments within the NICFD region are presented from which the wave speed and speed of sound can be inferred using the time-of-flight technique. These data can be used to improve and validate thermodynamic models.
2015
3rd International Seminar on ORC Power Systems - ASME ORC 2015
978-2-9600059-2-9
File in questo prodotto:
File Dimensione Formato  
MATHT01-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 7.7 MB
Formato Adobe PDF
7.7 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/971731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact