Oxamide (OXA) and azodicarbonamide (ADA) are among the known burning rate suppressants used in composite solid rocket propellants. Much research has been carried out to understand mechanism of suppression but literature about the action of OXA and ADA on the combustion characteristics of propellant is still scarce. Here, a systematic study on coolant-based propellants has been undertaken spanning from thermal analyses of ingredients to a variety of burning processes of the corresponding propellants. Thermal gravimetric analysis and differential thermal analysis on individual coolants are carried out to study their behaviour with temperature. It was noticed that the thermal decomposition of OXA exhibits only endothermic effects, whereas that of ADA presents both endothermic and exothermic effects. Successive experiments on solid propellant looking at burning rate characterization, condensed combustion product collection and visualization, pressure deflagration limit and thermochemical analysis gave a greater insight and enabled better understanding of the action of coolants during combustion. It is proposed that OXA and ADA are acting on both the condensed and gas phases. Also, the nature of coolant is a key parameter, which affects the burning rate pressure index. Increase of agglomerate size and of pressure deflagration limit was obtained in the coolant-based propellants, confirming the trend given in the literature.

Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants

MAGGI, FILIPPO;DE LUCA, LUIGI;FASSINA, MARCO;DOSSI, STEFANO;COLOMBO, GIOVANNI
2019-01-01

Abstract

Oxamide (OXA) and azodicarbonamide (ADA) are among the known burning rate suppressants used in composite solid rocket propellants. Much research has been carried out to understand mechanism of suppression but literature about the action of OXA and ADA on the combustion characteristics of propellant is still scarce. Here, a systematic study on coolant-based propellants has been undertaken spanning from thermal analyses of ingredients to a variety of burning processes of the corresponding propellants. Thermal gravimetric analysis and differential thermal analysis on individual coolants are carried out to study their behaviour with temperature. It was noticed that the thermal decomposition of OXA exhibits only endothermic effects, whereas that of ADA presents both endothermic and exothermic effects. Successive experiments on solid propellant looking at burning rate characterization, condensed combustion product collection and visualization, pressure deflagration limit and thermochemical analysis gave a greater insight and enabled better understanding of the action of coolants during combustion. It is proposed that OXA and ADA are acting on both the condensed and gas phases. Also, the nature of coolant is a key parameter, which affects the burning rate pressure index. Increase of agglomerate size and of pressure deflagration limit was obtained in the coolant-based propellants, confirming the trend given in the literature.
2019
Ammonium perchlorate; Burning rate suppressant; Combustion characteristics; Composite propellant
File in questo prodotto:
File Dimensione Formato  
TRACD01-19.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF   Visualizza/Apri
TRACD_OA_01-19.pdf

accesso aperto

Descrizione: Paper Open Access
: Publisher’s version
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/971555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 48
social impact