The aim of this paper is to analyze anisotropic damage mechanisms in forged Al–Cu–Mg–Si alloy based on the results of creep tests. Smooth specimens are sampled in three forging directions. Creep strain vs. time curves as well as light optical microscope and scanning electron microscope observations illustrate basic features of damage growth. Flat notch specimens are sampled in different directions to analyze stress redistributions and damage in zones of stress concentration. The digital image correlation technique has been applied in situ in order to extract the strain values on the surface of the notched specimens. All observations demonstrate that the principal origins of anisotropic creep and damage are associated with elongated grains and second phase clustered particles located at grain boundaries. Longitudinal specimens possess nucleations of decohesion sites and growth of voids around second phase particles at grain boundaries. Damage evolution for radial and transverse specimens is due to the formation and growth of cracks in second phase particles orthogonal to the principal stress axis. Residual strains are confined to the notch root as well as to the flanges of advanced macrocrack, indicating the small scale yielding during the creep fracture process.

Analysis of anisotropic damage in forged Al–Cu–Mg–Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations

GARIBOLDI, ELISABETTA;ZAPPA, EMANUELE
2016-01-01

Abstract

The aim of this paper is to analyze anisotropic damage mechanisms in forged Al–Cu–Mg–Si alloy based on the results of creep tests. Smooth specimens are sampled in three forging directions. Creep strain vs. time curves as well as light optical microscope and scanning electron microscope observations illustrate basic features of damage growth. Flat notch specimens are sampled in different directions to analyze stress redistributions and damage in zones of stress concentration. The digital image correlation technique has been applied in situ in order to extract the strain values on the surface of the notched specimens. All observations demonstrate that the principal origins of anisotropic creep and damage are associated with elongated grains and second phase clustered particles located at grain boundaries. Longitudinal specimens possess nucleations of decohesion sites and growth of voids around second phase particles at grain boundaries. Damage evolution for radial and transverse specimens is due to the formation and growth of cracks in second phase particles orthogonal to the principal stress axis. Residual strains are confined to the notch root as well as to the flanges of advanced macrocrack, indicating the small scale yielding during the creep fracture process.
2016
anisotropy, creep, digitalImage Correlation, notch, model
File in questo prodotto:
File Dimensione Formato  
Final_MatScienceEng.pdf

Accesso riservato

Descrizione: Paper_MatSciEng
: Publisher’s version
Dimensione 5.62 MB
Formato Adobe PDF
5.62 MB Adobe PDF   Visualizza/Apri
11311-971365 Zappa.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 6.15 MB
Formato Adobe PDF
6.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/971365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact