We prove three sharp bounds for solutions to the porous medium equation posed on Riemannian manifolds, or for weighted versions of such equation. Firstly we prove a smoothing effect for solutions which is valid on any Cartan–Hadamard manifold whose sectional curvatures are bounded above by a strictly negative constant. This bound includes as a special case the sharp smoothing effect recently proved by V´azquez on the hyperbolic space in V´azquez (2015), which is similar to the absolute bound valid in the case of bounded Euclidean domains but has a logarithmic correction. Secondly we prove a bound which interpolates between such smoothing effect and the Euclidean one, supposing a suitable quantitative Sobolev inequality holds, showing that it is sharp by means of explicit examples. Finally, assuming a stronger functional inequality of sub-Poincar´e type, we prove that the above mentioned (sharp) absolute bound holds, and provide examples of weighted porous media equations on manifolds of infinite volume in which it holds, in contrast with the nonweighted Euclidean situation. It is also shown that sub-Poincar´e inequalities cannot hold on Cartan–Hadamard manifolds.

Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds

GRILLO, GABRIELE;MURATORI, MATTEO
2016

Abstract

We prove three sharp bounds for solutions to the porous medium equation posed on Riemannian manifolds, or for weighted versions of such equation. Firstly we prove a smoothing effect for solutions which is valid on any Cartan–Hadamard manifold whose sectional curvatures are bounded above by a strictly negative constant. This bound includes as a special case the sharp smoothing effect recently proved by V´azquez on the hyperbolic space in V´azquez (2015), which is similar to the absolute bound valid in the case of bounded Euclidean domains but has a logarithmic correction. Secondly we prove a bound which interpolates between such smoothing effect and the Euclidean one, supposing a suitable quantitative Sobolev inequality holds, showing that it is sharp by means of explicit examples. Finally, assuming a stronger functional inequality of sub-Poincar´e type, we prove that the above mentioned (sharp) absolute bound holds, and provide examples of weighted porous media equations on manifolds of infinite volume in which it holds, in contrast with the nonweighted Euclidean situation. It is also shown that sub-Poincar´e inequalities cannot hold on Cartan–Hadamard manifolds.
Cartan-Hadamard manifolds; Nonlinear diffusion; Smoothing effects
File in questo prodotto:
File Dimensione Formato  
1506.08216v2.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 257.81 kB
Formato Adobe PDF
257.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/971360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact