The aerodynamic shape design of a proprotor for a tiltrotor aircraft is a very complex and demanding task because it has to combine good hovering capabilities with high propeller efficiency. The aim of the present work is to describe a two-level procedure and its results for the aerodynamic shape design of a new rotor blade for a high-performance tiltwing tiltrotor aircraft taking into account the most important flight conditions in which the aircraft can operate. Span-wise distributions of twist, chord and aerofoil were chosen making use of a multi-objective genetic optimiser that worked on three objectives simultaneously. A non-linear sweep angle distribution along the blade was designed to reduce the power losses due to compressibility effects during axial flight at high speed. During the optimisation process, the aerodynamic performance of the blade was evaluated with a classical two-dimensional strip theory solver. The optimised blade was than analysed by means of a compressible Navier-Stokes solver and calculations were validated comparing numerical results with experimental data obtained from wind-tunnel tests of a scaled model of the proprotor.

Aerodynamic Shape Optimisation of a Proprotor and Its Validation by Means of CFD and Experiments

DROANDI, GIOVANNI;GIBERTINI, GIUSEPPE
2015-01-01

Abstract

The aerodynamic shape design of a proprotor for a tiltrotor aircraft is a very complex and demanding task because it has to combine good hovering capabilities with high propeller efficiency. The aim of the present work is to describe a two-level procedure and its results for the aerodynamic shape design of a new rotor blade for a high-performance tiltwing tiltrotor aircraft taking into account the most important flight conditions in which the aircraft can operate. Span-wise distributions of twist, chord and aerofoil were chosen making use of a multi-objective genetic optimiser that worked on three objectives simultaneously. A non-linear sweep angle distribution along the blade was designed to reduce the power losses due to compressibility effects during axial flight at high speed. During the optimisation process, the aerodynamic performance of the blade was evaluated with a classical two-dimensional strip theory solver. The optimised blade was than analysed by means of a compressible Navier-Stokes solver and calculations were validated comparing numerical results with experimental data obtained from wind-tunnel tests of a scaled model of the proprotor.
2015
File in questo prodotto:
File Dimensione Formato  
DROAG_OA_03-15.pdf

Open Access dal 03/01/2018

Descrizione: Paper open access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri
DROAG03-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/971341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact