An EERA (European Energy Research Alliance) consortium started an ambitious EU FP7 project AVATAR (AdVanced Aerodynamic Tools of lArge Rotors) in November 2013. The project lasts 4 years and is carried out in a consortium with 11 research institutes and two industry partners. The motivation for the AVATAR project lies in the fact that future 10 to 20 MW turbine design model analysis will importantly violate known validity limits of today’s aerodynamic and aero-elastic models in aspects like compressibility and Reynolds number effects, laminar/turbulent transition and separation effects, all in combination with a much more complex fluid-structure interaction. Further complications enter by the possible use of active or passive flow devices. AVATAR's main aim is then to develop enhancements for aerodynamic and aero-elastic models suitable for large (10MW+) wind turbines analysis. The turbine modelling improvements will be demonstrated on a new 10MW reference turbine design model description. The first results from the AVATAR project are presented in this paper.

AVATAR: AdVanced Aerodynamic Tools for lArge Rotors

CROCE, ALESSANDRO;
2015-01-01

Abstract

An EERA (European Energy Research Alliance) consortium started an ambitious EU FP7 project AVATAR (AdVanced Aerodynamic Tools of lArge Rotors) in November 2013. The project lasts 4 years and is carried out in a consortium with 11 research institutes and two industry partners. The motivation for the AVATAR project lies in the fact that future 10 to 20 MW turbine design model analysis will importantly violate known validity limits of today’s aerodynamic and aero-elastic models in aspects like compressibility and Reynolds number effects, laminar/turbulent transition and separation effects, all in combination with a much more complex fluid-structure interaction. Further complications enter by the possible use of active or passive flow devices. AVATAR's main aim is then to develop enhancements for aerodynamic and aero-elastic models suitable for large (10MW+) wind turbines analysis. The turbine modelling improvements will be demonstrated on a new 10MW reference turbine design model description. The first results from the AVATAR project are presented in this paper.
33rd Wind Energy Symposium 2015
9781510801158
File in questo prodotto:
File Dimensione Formato  
SCHEJ01-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/971319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact