In this paper an algorithm is developed that combines the capabilities and advantages of several different astrodynamical models of increasing complexity. Splitting these models in a strict hierarchical order yields a clearer grasp on what is available. With the effort of developing a comprehensive model overhead, the equations for the spacecraft motion in simpler models can be readily obtained as particular cases. The proposed algorithm embeds the circular and elliptic restricted three-body problems, the four-body bicircular and concentric models, an averaged n-body model, and, at the top hierarchic ladder, the full ephemeris spice-based restricted n-body problem. The equations of motion are reduced to the assignment of 13 time-varying coefficients, which multiply the states and the gravitational potential to reproduce the proper vector field. This approach is powerful because it allows, for instance, an efficient and quick way to check solutions for different dynamics and parameters. It is shown how a gradual increase of the dynamics complexity greatly improves accuracy, the chances of success and the convergence rate of a continuation algorithm, applied to low-energy transfers.
On the Advantages of Using a Strict Hierarchy to Model Astrodynamical Problems
DEI TOS, DIOGENE ALESSANDRO;TOPPUTO, FRANCESCO
2015-01-01
Abstract
In this paper an algorithm is developed that combines the capabilities and advantages of several different astrodynamical models of increasing complexity. Splitting these models in a strict hierarchical order yields a clearer grasp on what is available. With the effort of developing a comprehensive model overhead, the equations for the spacecraft motion in simpler models can be readily obtained as particular cases. The proposed algorithm embeds the circular and elliptic restricted three-body problems, the four-body bicircular and concentric models, an averaged n-body model, and, at the top hierarchic ladder, the full ephemeris spice-based restricted n-body problem. The equations of motion are reduced to the assignment of 13 time-varying coefficients, which multiply the states and the gravitational potential to reproduce the proper vector field. This approach is powerful because it allows, for instance, an efficient and quick way to check solutions for different dynamics and parameters. It is shown how a gradual increase of the dynamics complexity greatly improves accuracy, the chances of success and the convergence rate of a continuation algorithm, applied to low-energy transfers.File | Dimensione | Formato | |
---|---|---|---|
DEITD02-15.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
DEIT_OA_02-15.pdf
accesso aperto
Descrizione: Paper Open Access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.