The high temperature chlorine chemistry was updated and the inhibition mechanisms involving HCl and Cl2 were re-examined. The thermochemistry was obtained using the Active Thermochemical Tables (ATcT) approach, resulting in improved data for chlorine-containing species of interest. The HCl/Cl2 chemistry discussed in the paper was based on reference and experimental measurements of rate constants available in the literature. By coupling the new HCl/Cl2 subset with the Politecnico di Milano (POLIMI) syngas mechanism a kinetic mechanism consisting of 25 species and 102 reactions was obtained. The validation was carried out on selected experimental data from laminar flames, shock tubes and plug flow reactors. Systems containing Cl2 showed high sensitivity to Cl2+M Cl + Cl + M; the rate constant for this reaction has a significant uncertainty and there is a need for an accurate high-temperature determination. The importance of the chain propagating steps such as Cl + H2 HCl + H and Cl2 + H HCl + Cl competing with the branching reaction H + O2 OH + O and the termination reaction H + Cl +M HCl + M is also pointed out by the kinetic analysis. Other relevant reactions in HCl containing systems are the chain propagation reactions HCl + O Cl + OH, HCl + OH Cl + H2O and Cl + HO2 ClO + OH, together with the termination reaction Cl + HO2 HCl + O2. With the present thermochemistry and rate constants, reaction cycles involving HOCl and ClCO were found not to be important under the investigated conditions.

High-temperature chemistry of HCl and Cl2

PELUCCHI, MATTEO;FRASSOLDATI, ALESSIO;FARAVELLI, TIZIANO;
2015-01-01

Abstract

The high temperature chlorine chemistry was updated and the inhibition mechanisms involving HCl and Cl2 were re-examined. The thermochemistry was obtained using the Active Thermochemical Tables (ATcT) approach, resulting in improved data for chlorine-containing species of interest. The HCl/Cl2 chemistry discussed in the paper was based on reference and experimental measurements of rate constants available in the literature. By coupling the new HCl/Cl2 subset with the Politecnico di Milano (POLIMI) syngas mechanism a kinetic mechanism consisting of 25 species and 102 reactions was obtained. The validation was carried out on selected experimental data from laminar flames, shock tubes and plug flow reactors. Systems containing Cl2 showed high sensitivity to Cl2+M Cl + Cl + M; the rate constant for this reaction has a significant uncertainty and there is a need for an accurate high-temperature determination. The importance of the chain propagating steps such as Cl + H2 HCl + H and Cl2 + H HCl + Cl competing with the branching reaction H + O2 OH + O and the termination reaction H + Cl +M HCl + M is also pointed out by the kinetic analysis. Other relevant reactions in HCl containing systems are the chain propagation reactions HCl + O Cl + OH, HCl + OH Cl + H2O and Cl + HO2 ClO + OH, together with the termination reaction Cl + HO2 HCl + O2. With the present thermochemistry and rate constants, reaction cycles involving HOCl and ClCO were found not to be important under the investigated conditions.
2015
Chlorine; Flame inhibition; Hydrogen chloride; Kinetics; Oxidation; Physics and Astronomy (all); Chemical Engineering (all); Energy Engineering and Power Technology; Fuel Technology; Chemistry (all)
File in questo prodotto:
File Dimensione Formato  
Pelucchi_et_al_CF2015.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF   Visualizza/Apri
High-temperature chemistry of HCl and Cl2_11311-970710_Frassoldati.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/970710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact