Gas diffusion medium (GDM) is a crucial component in proton exchange membrane fuel cells (PEMFCs). Being composed of a gas diffusion layer (GDL) with a micro-porous layer (MPL) coated onto it, it ensures a proper water management due to the highly hydrophobic materials employed in cell assembly. In current commercial applications, the desired water repellent behaviour is usually obtained by using polytetrafluoroethylene (PTFE). In this work, Fluorolink((R)) P56 (Solvay Specialty Polymers, Milan, Italy), a commercially available, anionic, segmented high molecular weight polyfluorourethane with perfluoropolyether groups was extensively evaluated as an alternative to PTFE for micro-porous layer hydrophobization. A change in polymer used is desirable in order to simplify the production process, both in terms of ink formulation and thermal treatment, as well as to get a higher hydrophobicity and, consequently, more efficient water management. Innovative prepared samples were compared to a PTFE-based GDM, in order to assess differences both from morphological and from an electrochemical point of view.

Development and characterization of non-conventional micro-porous layers for PEM fuel cells

BALZAROTTI, RICCARDO;LATORRATA, SAVERIO;GALLO STAMPINO, PAOLA;CRISTIANI, CINZIA;DOTELLI, GIOVANNI
2015-01-01

Abstract

Gas diffusion medium (GDM) is a crucial component in proton exchange membrane fuel cells (PEMFCs). Being composed of a gas diffusion layer (GDL) with a micro-porous layer (MPL) coated onto it, it ensures a proper water management due to the highly hydrophobic materials employed in cell assembly. In current commercial applications, the desired water repellent behaviour is usually obtained by using polytetrafluoroethylene (PTFE). In this work, Fluorolink((R)) P56 (Solvay Specialty Polymers, Milan, Italy), a commercially available, anionic, segmented high molecular weight polyfluorourethane with perfluoropolyether groups was extensively evaluated as an alternative to PTFE for micro-porous layer hydrophobization. A change in polymer used is desirable in order to simplify the production process, both in terms of ink formulation and thermal treatment, as well as to get a higher hydrophobicity and, consequently, more efficient water management. Innovative prepared samples were compared to a PTFE-based GDM, in order to assess differences both from morphological and from an electrochemical point of view.
Electrochemical impedance spectroscopy; Hydrophobic coatings; Micro-porous layer; PEMFCs; Perfluoropolyethers; Computer Science (all)
File in questo prodotto:
File Dimensione Formato  
Development and Characterization of Non-Conventional Micro-Porous Layers for PEM Fuel Cells Energies 2015.pdf

accesso aperto

Descrizione: ARTICOLO PRINCIPALE
: Publisher’s version
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/970269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact