Geometrical error in abrasive waterjet turned parts is an important challenge toward the commercialization of abrasive waterjet turning process. A systematic study has not been done yet to investigate the effects of process parameters on geometrical error in abrasive waterjet offset-mode turning. In this article, a comprehensive study has been performed to investigate the influence of several machining parameters on the geometrical error (part diameter percent error) in turning AA2011-T4 aluminum alloy round bars. Water pressure, cutting head traverse speed, workpiece rotational speed, abrasive mass flow rate and depth of cut were considered as the main machining parameters in a five-level statistical experimental design. Based on central composite rotatable design, a total of 52 experiments were carried out. The main effects of the parameters and interactions among them were analyzed based on the analysis of variance technique, and the response contours for the part geometrical error were obtained using a quadratic regression model (i.e. response surface methodology). The model predictions were found to be in good agreement with experimental data. Furthermore, among the significant parameters, water pressure, depth of cut and traverse speed are the most influential parameters, with percent contribution of almost 25% each. Abrasive mass flow rate is the least influential parameter with a percent contribution of 4%.
Influence of machining parameters on part geometrical error in abrasive waterjet offset-mode turning
CACCIATORE, FRANCESCO;ANNONI, MASSIMILIANO PIETRO GIOVANNI
2014-01-01
Abstract
Geometrical error in abrasive waterjet turned parts is an important challenge toward the commercialization of abrasive waterjet turning process. A systematic study has not been done yet to investigate the effects of process parameters on geometrical error in abrasive waterjet offset-mode turning. In this article, a comprehensive study has been performed to investigate the influence of several machining parameters on the geometrical error (part diameter percent error) in turning AA2011-T4 aluminum alloy round bars. Water pressure, cutting head traverse speed, workpiece rotational speed, abrasive mass flow rate and depth of cut were considered as the main machining parameters in a five-level statistical experimental design. Based on central composite rotatable design, a total of 52 experiments were carried out. The main effects of the parameters and interactions among them were analyzed based on the analysis of variance technique, and the response contours for the part geometrical error were obtained using a quadratic regression model (i.e. response surface methodology). The model predictions were found to be in good agreement with experimental data. Furthermore, among the significant parameters, water pressure, depth of cut and traverse speed are the most influential parameters, with percent contribution of almost 25% each. Abrasive mass flow rate is the least influential parameter with a percent contribution of 4%.File | Dimensione | Formato | |
---|---|---|---|
0Influence of machining parameters on part geometrical error in abrasive waterjet offset-mode turning.pdf
Open Access dal 02/01/2016
Descrizione: Post-print
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
6.88 MB
Formato
Adobe PDF
|
6.88 MB | Adobe PDF | Visualizza/Apri |
Influence of machining parameters on part geometrical error in abrasive waterjet offset-mode turning.pdf
Accesso riservato
Descrizione: Paper definitivo
:
Publisher’s version
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.