"In order to enhance material removal rate (MRR), a strategy that relies on higher depths of cut could be chosen if vibrational issues due to regenerative chatter did not occur. A lot of research was done to suppress regenerative chatter without detrimental effects on productivity. One of the most interesting chatter suppression methods, mainly due to its flexibility and relative ease of implementation, is spindle speed variation (SSV), which consists in a continuous modulation of the nominal cutting speed. Sinusoidal spindle speed variation (SSSV) is a specific technique that exploits a sinusoidal law to modulate the cutting speed. The vast scientific literature on SSV was mainly focused on cutting process stability issues fully neglecting the study of the mechanics of chip formation in SSV machining. The aim of this work is to fill this gap: thus, finite element method (FEM) models of Ti-6Al-4V turning were setup to simulate both SSSV and constant speed machining (CSM). The models consider both the micro-geometry of the insert and the coating. Numerical results were experimentally validated on dry turning tests of titanium tubes exploiting the experimental assessment of cutting forces, cutting temperatures and chip morphology. Tool-chip contact pressure, tool engagement mechanism and the thermal distribution in the insert are some of the analysed numerical outputs because they cannot be easily assessed by experimental procedures. These quantities were useful to compare thermo-mechanical loads of the insert both in CSM and SSSV machining: it was observed that the loads significantly differ. Compared to CSM, the modulation of the cutting speed involves a higher tool-chip contact pressure peak, a higher maximum temperature and higher temperature gradients that could foster the main tool wear mechanisms. (C) 2013 Elsevier Ltd. All rights reserved."

On the mechanics of chip formation in Ti-6Al-4V turning with spindle speed variation

CHIAPPINI, ELIO;TIRELLI, STEFANO;ALBERTELLI, PAOLO;STRANO, MATTEO;MONNO, MICHELE
2014-01-01

Abstract

"In order to enhance material removal rate (MRR), a strategy that relies on higher depths of cut could be chosen if vibrational issues due to regenerative chatter did not occur. A lot of research was done to suppress regenerative chatter without detrimental effects on productivity. One of the most interesting chatter suppression methods, mainly due to its flexibility and relative ease of implementation, is spindle speed variation (SSV), which consists in a continuous modulation of the nominal cutting speed. Sinusoidal spindle speed variation (SSSV) is a specific technique that exploits a sinusoidal law to modulate the cutting speed. The vast scientific literature on SSV was mainly focused on cutting process stability issues fully neglecting the study of the mechanics of chip formation in SSV machining. The aim of this work is to fill this gap: thus, finite element method (FEM) models of Ti-6Al-4V turning were setup to simulate both SSSV and constant speed machining (CSM). The models consider both the micro-geometry of the insert and the coating. Numerical results were experimentally validated on dry turning tests of titanium tubes exploiting the experimental assessment of cutting forces, cutting temperatures and chip morphology. Tool-chip contact pressure, tool engagement mechanism and the thermal distribution in the insert are some of the analysed numerical outputs because they cannot be easily assessed by experimental procedures. These quantities were useful to compare thermo-mechanical loads of the insert both in CSM and SSSV machining: it was observed that the loads significantly differ. Compared to CSM, the modulation of the cutting speed involves a higher tool-chip contact pressure peak, a higher maximum temperature and higher temperature gradients that could foster the main tool wear mechanisms. (C) 2013 Elsevier Ltd. All rights reserved."
2014
Finite element modelling; Spindle speed variation; Titanium turning; Industrial and Manufacturing Engineering; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
On the mechanics of chip formation in Ti–6Al–4V turning with spindle speed variation.pdf

Accesso riservato

Descrizione: Paper definitivo
: Publisher’s version
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF   Visualizza/Apri
0On the mechanics of chip formation in Ti6Al4V turning with spindle speed variation_V09.pdf

Open Access dal 02/01/2017

Descrizione: Post-print
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/968961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact