This paper presents a motion planning method for a simple wheeled robot in two cases: (i) where translational and rotational speeds are arbitrary, and (ii) where the robot is constrained to move forwards at unit speed. The motions are generated by formulating a constrained optimal control problem on the Special Euclidean group SE(2). An application of Pontryagin's maximum principle for arbitrary speeds yields an optimal Hamiltonian which is completely integrable in terms of Jacobi elliptic functions. In the unit speed case, the rotational velocity is described in terms of elliptic integrals, and the expression for the position is reduced to quadratures. Reachable sets are defined in the arbitrary speed case, and a numerical plot of the time-limited reachable sets is presented for the unit speed case. The resulting analytical functions for the position and orientation of the robot can be parametrically optimised to match prescribed target states within the reachable sets. The method is shown to be easily adapted to obstacle avoidance for static obstacles in a known environment.

Path planning for simple wheeled robots: Sub-Riemannian and elastic curves on SE(2)

BIGGS, JAMES DOUGLAS
2013-01-01

Abstract

This paper presents a motion planning method for a simple wheeled robot in two cases: (i) where translational and rotational speeds are arbitrary, and (ii) where the robot is constrained to move forwards at unit speed. The motions are generated by formulating a constrained optimal control problem on the Special Euclidean group SE(2). An application of Pontryagin's maximum principle for arbitrary speeds yields an optimal Hamiltonian which is completely integrable in terms of Jacobi elliptic functions. In the unit speed case, the rotational velocity is described in terms of elliptic integrals, and the expression for the position is reduced to quadratures. Reachable sets are defined in the arbitrary speed case, and a numerical plot of the time-limited reachable sets is presented for the unit speed case. The resulting analytical functions for the position and orientation of the robot can be parametrically optimised to match prescribed target states within the reachable sets. The method is shown to be easily adapted to obstacle avoidance for static obstacles in a known environment.
2013
Geometric control; Motion planning; Optimal control; Path planning; Wheeled robots; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Software; Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
MCLEC01-13.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 957.17 kB
Formato Adobe PDF
957.17 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/968245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact