A belief function theory based approach to combining different representation of uncertainty in prognostics

BARALDI, PIERO;ZIO, ENRICO
2015-01-01

2015
Belief function theory; Filter clogging; Gaussian process regression; Prognostics; Uncertainty representation; Artificial Intelligence; Software; Control and Systems Engineering; Theoretical Computer Science; Computer Science Applications1707 Computer Vision and Pattern Recognition; Information Systems and Management
File in questo prodotto:
File Dimensione Formato  
17__A Belief Function Theory Based Approach to Combining Different Representation of Uncertainty in Prognostics.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 879.06 kB
Formato Adobe PDF
879.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/967775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact