We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension $d = 2$ the answer is three. For the dimensions $d = 3$ and $d \geq 5$ the answer is four. For the dimension $d = 4$ the answer is either three or four. Curiously, the exact number in $d = 4$ seems to be an open problem.
How many orthonormal bases are needed to distinguish all pure quantum states?
SCHULTZ, JUSSI ILMARI;TOIGO, ALESSANDRO
2015-01-01
Abstract
We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension $d = 2$ the answer is three. For the dimensions $d = 3$ and $d \geq 5$ the answer is four. For the dimension $d = 4$ the answer is either three or four. Curiously, the exact number in $d = 4$ seems to be an open problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Eur_Phys_J_D_69_(2015)_179.pdf
Accesso riservato
:
Publisher’s version
Dimensione
433.48 kB
Formato
Adobe PDF
|
433.48 kB | Adobe PDF | Visualizza/Apri |
How many orthonormal bases are needed to distinguish all pure quantum states_11311-965861_Toigo.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
619.93 kB
Formato
Adobe PDF
|
619.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.