We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension $d = 2$ the answer is three. For the dimensions $d = 3$ and $d \geq 5$ the answer is four. For the dimension $d = 4$ the answer is either three or four. Curiously, the exact number in $d = 4$ seems to be an open problem.

How many orthonormal bases are needed to distinguish all pure quantum states?

SCHULTZ, JUSSI ILMARI;TOIGO, ALESSANDRO
2015-01-01

Abstract

We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension $d = 2$ the answer is three. For the dimensions $d = 3$ and $d \geq 5$ the answer is four. For the dimension $d = 4$ the answer is either three or four. Curiously, the exact number in $d = 4$ seems to be an open problem.
File in questo prodotto:
File Dimensione Formato  
Eur_Phys_J_D_69_(2015)_179.pdf

Accesso riservato

: Publisher’s version
Dimensione 433.48 kB
Formato Adobe PDF
433.48 kB Adobe PDF   Visualizza/Apri
How many orthonormal bases are needed to distinguish all pure quantum states_11311-965861_Toigo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 619.93 kB
Formato Adobe PDF
619.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/965861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact