With the advent of next-generation mobile devices, wireless networks must be upgraded to fill the gap between huge user data demands and scarce channel capacity. Mm-waves tech- nologies appear as the key-enabler for the future 5G networks design, exhibiting large bandwidth availability and high data rate. As counterpart, the small wave-length incurs in a harsh signal propagation that limits the transmission range. To overcome this limitation, array of antennas with a relatively high number of small elements are used to exploit beamforming techniques that greatly increase antenna directionality both at base station and user terminal. These very narrow beams are used during data transfer and tracking techniques dynamically adapt the direction according to terminal mobility. During cell discovery when initial synchronization must be acquired, however, directionality can delay the process since the best direction to point the beam is unknown. All space must be scanned using the tradeoff between beam width and transmission range. Some support to speed up the cell search process can come from the new architectures for 5G currently being investigated, where conventional wireless network and mm-waves technologies coexist. In these architecture a functional split between C-plane and U-plane allows to guarantee the continuous availability of a signaling channel through conventional wireless technologies with the opportunity to convey context information from users to network. In this paper, we investigate the use of position information provided by user terminals in order to improve the performance of the cell search process. We analyze mm-wave propagation environment and show how it is possible to take into account of position inaccuracy and reflected rays in presence of obstacles

Obstacle Avoidance Cell Discovery using mm-waves Directive Antennas in 5G Networks

CAPONE, ANTONIO;FILIPPINI, ILARIO;SCIANCALEPORE, VINCENZO;
2015-01-01

Abstract

With the advent of next-generation mobile devices, wireless networks must be upgraded to fill the gap between huge user data demands and scarce channel capacity. Mm-waves tech- nologies appear as the key-enabler for the future 5G networks design, exhibiting large bandwidth availability and high data rate. As counterpart, the small wave-length incurs in a harsh signal propagation that limits the transmission range. To overcome this limitation, array of antennas with a relatively high number of small elements are used to exploit beamforming techniques that greatly increase antenna directionality both at base station and user terminal. These very narrow beams are used during data transfer and tracking techniques dynamically adapt the direction according to terminal mobility. During cell discovery when initial synchronization must be acquired, however, directionality can delay the process since the best direction to point the beam is unknown. All space must be scanned using the tradeoff between beam width and transmission range. Some support to speed up the cell search process can come from the new architectures for 5G currently being investigated, where conventional wireless network and mm-waves technologies coexist. In these architecture a functional split between C-plane and U-plane allows to guarantee the continuous availability of a signaling channel through conventional wireless technologies with the opportunity to convey context information from users to network. In this paper, we investigate the use of position information provided by user terminals in order to improve the performance of the cell search process. We analyze mm-wave propagation environment and show how it is possible to take into account of position inaccuracy and reflected rays in presence of obstacles
2015
IEEE PIMRC 2015, workshop on Cloud Cooperated Heterogeneous Cellular Networks for 5G
978-1-4673-6782-0
File in questo prodotto:
File Dimensione Formato  
PIMRC2015-3.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/965253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact