In this study, the high velocity impact behavior of a dual-plate multifunctional panel composed by a carbon fiber reinforced plastics (CFRP) laminate and an ionomer thermoplastic resin plate is investigated experimentally. A unique characteristic of this panel is the ability to auto-repair holes generated by impacts, which is possible due to the ionomer layer. This panel is also a structural element since it includes a CFRP laminate layer. In the experimental campaign spherical aluminum projectiles with a diameter ranging from 2.3 to 4.5 mm were impacted against the multifunctional panel at impact velocities ranging from ∼2.0 to ∼2.5 km/s and all impacts were normal to the target. Impacts occurring on the CFRP and ionomer side were investigated. The impact response of the panels discussed in this work concerns the following characteristics: debris cloud shape, damage on the witness plate, momentum transferred to the witness plate and self-healing. It was observed that when the ionomer was located on the back side of the panel it hindered the debris cloud expansion. This configuration also resulted in lower momentum transfer to the witness plate. The layers disposition had a minor effect on fragment velocity at the debris cloud tip for impact energies above -200 J. Complete self-healing of the hole occurred in all impact cases up to the projectile diameter of 3.5 mm.

High Velocity Impact Behavior of Composite Sandwich Panels with Self-Healing Capabilities

GRANDE, ANTONIO MATTIA;DI LANDRO, LUCA ANGELO
2014-01-01

Abstract

In this study, the high velocity impact behavior of a dual-plate multifunctional panel composed by a carbon fiber reinforced plastics (CFRP) laminate and an ionomer thermoplastic resin plate is investigated experimentally. A unique characteristic of this panel is the ability to auto-repair holes generated by impacts, which is possible due to the ionomer layer. This panel is also a structural element since it includes a CFRP laminate layer. In the experimental campaign spherical aluminum projectiles with a diameter ranging from 2.3 to 4.5 mm were impacted against the multifunctional panel at impact velocities ranging from ∼2.0 to ∼2.5 km/s and all impacts were normal to the target. Impacts occurring on the CFRP and ionomer side were investigated. The impact response of the panels discussed in this work concerns the following characteristics: debris cloud shape, damage on the witness plate, momentum transferred to the witness plate and self-healing. It was observed that when the ionomer was located on the back side of the panel it hindered the debris cloud expansion. This configuration also resulted in lower momentum transfer to the witness plate. The layers disposition had a minor effect on fragment velocity at the debris cloud tip for impact energies above -200 J. Complete self-healing of the hole occurred in all impact cases up to the projectile diameter of 3.5 mm.
2014
65th International Astronautical Congress 2014 (IAC 2014)
9781634399869
File in questo prodotto:
File Dimensione Formato  
MUDRT01-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 445.77 kB
Formato Adobe PDF
445.77 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/964085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact