The paper presents a multifidelity robust optimization technique with application to the design of rotor blade airfoils in hover. A genetic algorithm is coupled with a non-intrusive uncertainty propagation technique based on polynomial chaos expansion to determine the robust optimal airfoils that maximize the mean value of the lift-to-drag ratio while minimizing the variance, under uncertain operating conditions. Uncertainties on the blade pitch angle and induced velocity are considered. To deal with the variable operating conditions induced by the considered uncertainties and to alleviate the computational cost of the optimization procedure, a multifidelity strategy is developed that exploits two aerodynamic models of different fidelity. The two models correspond to different physical descriptions of the flowfield around the airfoil; thus, the multifidelity method employs the low-fidelity model in regions of the stochastic space where the physics of the problem is well captured by the model, and it switches to high-fidelity estimates only where needed. The proposed robust optimization technique is compared with the robust optimization based on the high-fidelity aerodynamic model and the deterministic optimization, to assess the capability of finding a consistent Pareto set and to evaluate the numerical efficiency. The results obtained show how the robust multifidelity approach is effective in reducing the sensitivity of the designed airfoils with respect to variation in the operating conditions.

Multifidelity Physics-Based Method for Robust Optimization Applied to a Hovering Rotor Airfoil

FUSI, FRANCESCA;GUARDONE, ALBERTO MATTEO ATTILIO;QUARANTA, GIUSEPPE;
2015-01-01

Abstract

The paper presents a multifidelity robust optimization technique with application to the design of rotor blade airfoils in hover. A genetic algorithm is coupled with a non-intrusive uncertainty propagation technique based on polynomial chaos expansion to determine the robust optimal airfoils that maximize the mean value of the lift-to-drag ratio while minimizing the variance, under uncertain operating conditions. Uncertainties on the blade pitch angle and induced velocity are considered. To deal with the variable operating conditions induced by the considered uncertainties and to alleviate the computational cost of the optimization procedure, a multifidelity strategy is developed that exploits two aerodynamic models of different fidelity. The two models correspond to different physical descriptions of the flowfield around the airfoil; thus, the multifidelity method employs the low-fidelity model in regions of the stochastic space where the physics of the problem is well captured by the model, and it switches to high-fidelity estimates only where needed. The proposed robust optimization technique is compared with the robust optimization based on the high-fidelity aerodynamic model and the deterministic optimization, to assess the capability of finding a consistent Pareto set and to evaluate the numerical efficiency. The results obtained show how the robust multifidelity approach is effective in reducing the sensitivity of the designed airfoils with respect to variation in the operating conditions.
2015
File in questo prodotto:
File Dimensione Formato  
FUSIF_OA_03-15.pdf

Open Access dal 02/12/2015

Descrizione: Paper open access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 733.34 kB
Formato Adobe PDF
733.34 kB Adobe PDF Visualizza/Apri
FUSIF03-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/962750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact