The transonic flow at throat section of a convergent-divergent nozzle is studied in adapted conditions to assess the influence of the fluid molecular complexity and total thermodynamic state on the discharge coefficient. The standard Sauer method is applied to solve the transonic perturbation potential equation in the vicinity of the nozzle throat. An analytic expression is derived that allows one to compute the discharge coefficient in terms of the nozzle curvature at the throat section and of the value of the fundamental derivative of gasdynamics at sonic conditions, which depends on the fluid molecular complexity and on the thermodynamic state in the reservoir. A linear dependence of the discharge coefficient on the sonic value of the fundamental derivative of gasdynamics is exposed.

Effects of Molecular Complexity and Reservoir Conditions on the Discharge Coefficient of Adapted Planar Nozzles

GUARDONE, ALBERTO MATTEO ATTILIO
2015-01-01

Abstract

The transonic flow at throat section of a convergent-divergent nozzle is studied in adapted conditions to assess the influence of the fluid molecular complexity and total thermodynamic state on the discharge coefficient. The standard Sauer method is applied to solve the transonic perturbation potential equation in the vicinity of the nozzle throat. An analytic expression is derived that allows one to compute the discharge coefficient in terms of the nozzle curvature at the throat section and of the value of the fundamental derivative of gasdynamics at sonic conditions, which depends on the fluid molecular complexity and on the thermodynamic state in the reservoir. A linear dependence of the discharge coefficient on the sonic value of the fundamental derivative of gasdynamics is exposed.
2015
File in questo prodotto:
File Dimensione Formato  
GUARA01-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 204.31 kB
Formato Adobe PDF
204.31 kB Adobe PDF   Visualizza/Apri
GUARA_OA_01-15.pdf

accesso aperto

Descrizione: Paper Open Access
: Publisher’s version
Dimensione 640.81 kB
Formato Adobe PDF
640.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/962203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact