Brain-inspired arrays of parallel processing oscillators represent an intriguing alternative to traditional computational methods for data analysis and recognition. This alternative is now becoming more concrete thanks to the advent of emerging oscillators fabrication technologies providing high density packaging and low power consumption. One challenging issue related to oscillator arrays is the large number of system parameters and the lack of efficient computational techniques for array simulation and performance verification. This paper provides a realistic phase-domain modeling and simulation methodology of oscillator arrays which is able to account for the relevant device nonidealities. The model is employed to investigate the associative memory performance of arrays composed of resonant LC oscillators.

Oscillator Array Models for Associative Memory and Pattern Recognition

MAFFEZZONI, PAOLO;
2015-01-01

Abstract

Brain-inspired arrays of parallel processing oscillators represent an intriguing alternative to traditional computational methods for data analysis and recognition. This alternative is now becoming more concrete thanks to the advent of emerging oscillators fabrication technologies providing high density packaging and low power consumption. One challenging issue related to oscillator arrays is the large number of system parameters and the lack of efficient computational techniques for array simulation and performance verification. This paper provides a realistic phase-domain modeling and simulation methodology of oscillator arrays which is able to account for the relevant device nonidealities. The model is employed to investigate the associative memory performance of arrays composed of resonant LC oscillators.
File in questo prodotto:
File Dimensione Formato  
Hard_Copy_TCAS1_16140.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF   Visualizza/Apri
Oscillator Array Models for Associative Memory_11311-959638_Maffezzoni.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/959638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 35
social impact