High-dimensional independent component analysis (ICA), compared to low-dimensional ICA, allows to conduct a detailed parcellation of the resting-state networks. The purpose of this study was to give further insight into functional connectivity (FC) in Alzheimer's disease (AD) using high-dimensional ICA. For this reason, we performed both low- and high-dimensional ICA analyses of resting-state fMRI data of 20 healthy controls and 21 patients with AD, focusing on the primarily altered default-mode network (DMN) and exploring the sensory-motor network. As expected, results obtained at low dimensionality were in line with previous literature. Moreover, high-dimensional results allowed us to observe either the presence of within-network disconnections and FC damage confined to some of the resting-state subnetworks. Due to the higher sensitivity of the high-dimensional ICA analysis, our results suggest that high-dimensional decomposition in subnetworks is very promising to better localize FC alterations in AD and that FC damage is not confined to the DMN.
High-dimensional ICA analysis detects wthin-network functional connectivity damage of default-mode and sensory-motor networks in Alzheimer's disease
DIPASQUALE, OTTAVIA;BASELLI, GIUSEPPE;
2015-01-01
Abstract
High-dimensional independent component analysis (ICA), compared to low-dimensional ICA, allows to conduct a detailed parcellation of the resting-state networks. The purpose of this study was to give further insight into functional connectivity (FC) in Alzheimer's disease (AD) using high-dimensional ICA. For this reason, we performed both low- and high-dimensional ICA analyses of resting-state fMRI data of 20 healthy controls and 21 patients with AD, focusing on the primarily altered default-mode network (DMN) and exploring the sensory-motor network. As expected, results obtained at low dimensionality were in line with previous literature. Moreover, high-dimensional results allowed us to observe either the presence of within-network disconnections and FC damage confined to some of the resting-state subnetworks. Due to the higher sensitivity of the high-dimensional ICA analysis, our results suggest that high-dimensional decomposition in subnetworks is very promising to better localize FC alterations in AD and that FC damage is not confined to the DMN.File | Dimensione | Formato | |
---|---|---|---|
11311-940362_Baselli.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.