Zymomonas mobilis ferments only glucose, fructose and sucrose via the Entner-Doudoroff pathway, providing an equimolar mixture of ethanol and CO2 and theoretically, as for Saccharomyces cerevisiae, the gas evolved can be used to leaven a dough. However, the capability of Z. mobilis to produce CO2 has rarely been exploited. In the present study we first evaluated the growing performance of two Z. mobilis strains (DSMZ 424 and 3580) in a culture medium lacking yeast extract, with added glucose or fructose (20 and 50 g/L) comparatively; the results demonstrated that biomass yield is 50 % higher with glucose. The best conditions were up-scaled, obtaining a biomass yield of 1.3–1.4 g dcw/L in a 14-L fermenter. Leavening trials performed in a model system with the biomass collected from fermenters after 9 or 16 h incubation evidenced that Z. mobilis can leaven a model dough as S. cerevisiae does, and showing a CO2 production rate (9–11 mL g dcw−1 min−1) statistically higher than that of S. cerevisiae (6–7 mL g dcw−1 min−1), especially when using 9-h-grown biomass. Bakery products leavened with Z. mobilis could thus be available to people with adverse responses to the ingestion of bakery food, providing innovation in the area of yeast-free leavened baked goods.
Zymomonas mobilis: biomass production and use as a dough leavening agent
SAMBUSITI, CECILIA;
2015-01-01
Abstract
Zymomonas mobilis ferments only glucose, fructose and sucrose via the Entner-Doudoroff pathway, providing an equimolar mixture of ethanol and CO2 and theoretically, as for Saccharomyces cerevisiae, the gas evolved can be used to leaven a dough. However, the capability of Z. mobilis to produce CO2 has rarely been exploited. In the present study we first evaluated the growing performance of two Z. mobilis strains (DSMZ 424 and 3580) in a culture medium lacking yeast extract, with added glucose or fructose (20 and 50 g/L) comparatively; the results demonstrated that biomass yield is 50 % higher with glucose. The best conditions were up-scaled, obtaining a biomass yield of 1.3–1.4 g dcw/L in a 14-L fermenter. Leavening trials performed in a model system with the biomass collected from fermenters after 9 or 16 h incubation evidenced that Z. mobilis can leaven a model dough as S. cerevisiae does, and showing a CO2 production rate (9–11 mL g dcw−1 min−1) statistically higher than that of S. cerevisiae (6–7 mL g dcw−1 min−1), especially when using 9-h-grown biomass. Bakery products leavened with Z. mobilis could thus be available to people with adverse responses to the ingestion of bakery food, providing innovation in the area of yeast-free leavened baked goods.File | Dimensione | Formato | |
---|---|---|---|
zymomonas mobilis.pdf
Accesso riservato
:
Publisher’s version
Dimensione
579.35 kB
Formato
Adobe PDF
|
579.35 kB | Adobe PDF | Visualizza/Apri |
Zymomonas mobilis-biomass production and use_11311-939158_Sambusiti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
255.74 kB
Formato
Adobe PDF
|
255.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.