With the availability of user oriented software tools, dedicated architectures, such as the parallel computing platform and programming model CUDA (Compute Unified Device Architecture) released by NVIDIA, one of the main producers of graphics cards, and of improved, highly performing GPU (Graphics Processing Unit) boards, GPGPU (General Purpose programming on GPU) is attracting increasing interest in the engineering community, for the development of analysis tools suitable to be used in validation/ verification and virtual reality applications. For their inherent explicit and decoupled structure, explicit dynamics finite element formulations appear to be particularly attractive for implementations on hybrid CPU/GPU or pure GPU architectures. The issue of an optimized, double-precision finite element GPU implementation of an explicit dynamics finite element solver for elastic shell problems in small strains and large displacements and rotations, using unstructured meshes, is here addressed. The conceptual difference between a GPU implementation directly adapted from a standard CPU approach and a new optimized formulation, specifically conceived for GPUs, is discussed and comparatively assessed. It is shown that a speedup factor of about 5 can be achieved by an optimized algorithm reformulation and careful memory management. A speedup of more than 40 is achieved with respect of state-of-the art commercial codes running on CPU, obtaining real-time simulations in some cases, on commodity hardware. When a last generation GPU board is used, it is shown that a problem with more than 16 millions degrees of freedom can be solved in just few hours of computing time, opening the way to virtualization approaches for real large scale engineering problems.

An explicit dynamics GPU structural solver for thin shell finite elements

CREMONESI, MASSIMILIANO;PAROLINI, NICOLA;PEREGO, UMBERTO
2015-01-01

Abstract

With the availability of user oriented software tools, dedicated architectures, such as the parallel computing platform and programming model CUDA (Compute Unified Device Architecture) released by NVIDIA, one of the main producers of graphics cards, and of improved, highly performing GPU (Graphics Processing Unit) boards, GPGPU (General Purpose programming on GPU) is attracting increasing interest in the engineering community, for the development of analysis tools suitable to be used in validation/ verification and virtual reality applications. For their inherent explicit and decoupled structure, explicit dynamics finite element formulations appear to be particularly attractive for implementations on hybrid CPU/GPU or pure GPU architectures. The issue of an optimized, double-precision finite element GPU implementation of an explicit dynamics finite element solver for elastic shell problems in small strains and large displacements and rotations, using unstructured meshes, is here addressed. The conceptual difference between a GPU implementation directly adapted from a standard CPU approach and a new optimized formulation, specifically conceived for GPUs, is discussed and comparatively assessed. It is shown that a speedup factor of about 5 can be achieved by an optimized algorithm reformulation and careful memory management. A speedup of more than 40 is achieved with respect of state-of-the art commercial codes running on CPU, obtaining real-time simulations in some cases, on commodity hardware. When a last generation GPU board is used, it is shown that a problem with more than 16 millions degrees of freedom can be solved in just few hours of computing time, opening the way to virtualization approaches for real large scale engineering problems.
2015
gpu; Explicit dynamics; finite elements
File in questo prodotto:
File Dimensione Formato  
2015_Bartezzaghi_Cremonesi_Parolini_Perego_Comp_Structures.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
2015_Bartezzaghi_Cremonesi_Parolini_Perego_C&S.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/938365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact