Newborns with single ventricle physiology are usually palliated with a multi-staged procedure. When cardiovascular complications e.g., collateral vessel formation occur during the inter-stage periods, further treatments are required. An 8-month-old patient, who underwent second stage (i.e., bi-directional Glenn, BDG) surgery at 4 months, was diagnosed with a major veno-venous collateral vessel (VVC) which was endovascularly occluded to improve blood oxygen saturations. Few clinical data were collected at 8 months, whereas at 4 months a more detailed data set was available. The aim of this study is threefold: (i) to show how to build a patient-specific model describing the hemodynamics in the presence of VVC, using patient-specific clinical data collected at different times; (ii) to use this model to perform virtual VVC occlusion for quantitative hemodynamics prediction; and (iii) to compare predicted hemodynamics with post-operative measurements. The three-dimensional BDG geometry, resulting from the virtual surgery on the first stage model, was coupled with a lumped parameter model (LPM) of the 8-month patient's circulation. The latter was developed by scaling the 4-month LPM to account for changes in vascular impedances due to growth and adaptation. After virtual VVC closure, the model confirmed the 2 mmHg BDG pressure increase, as clinically observed, suggesting the importance of modeling vascular adaptation following the BDG procedure.
Integration of Clinical Data Collected at Different Times for Virtual Surgery in Single Ventricle Patients: A Case Study
CORSINI, CHIARA;BARETTA, ALESSIA;MIGLIAVACCA, FRANCESCO;PENNATI, GIANCARLO
2015-01-01
Abstract
Newborns with single ventricle physiology are usually palliated with a multi-staged procedure. When cardiovascular complications e.g., collateral vessel formation occur during the inter-stage periods, further treatments are required. An 8-month-old patient, who underwent second stage (i.e., bi-directional Glenn, BDG) surgery at 4 months, was diagnosed with a major veno-venous collateral vessel (VVC) which was endovascularly occluded to improve blood oxygen saturations. Few clinical data were collected at 8 months, whereas at 4 months a more detailed data set was available. The aim of this study is threefold: (i) to show how to build a patient-specific model describing the hemodynamics in the presence of VVC, using patient-specific clinical data collected at different times; (ii) to use this model to perform virtual VVC occlusion for quantitative hemodynamics prediction; and (iii) to compare predicted hemodynamics with post-operative measurements. The three-dimensional BDG geometry, resulting from the virtual surgery on the first stage model, was coupled with a lumped parameter model (LPM) of the 8-month patient's circulation. The latter was developed by scaling the 4-month LPM to account for changes in vascular impedances due to growth and adaptation. After virtual VVC closure, the model confirmed the 2 mmHg BDG pressure increase, as clinically observed, suggesting the importance of modeling vascular adaptation following the BDG procedure.File | Dimensione | Formato | |
---|---|---|---|
2015-Corsini -Integration of Clinical Data Collected at Different Times for Virtual Surgery in Single Ventricle Patients_ A Case Study-Author Copy.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
Integration of Clinical Data Collected at Different Times_11311-935557_Migliavacca.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.