The Density of States (DOS) is an ingredient of critical importance for the accurate physical understanding of the optoelectronic properties of organic semiconductors. The disordered nature of this class of materials, though, renders the task of determining the DOS far from trivial. Its extraction from experimental measurements is often performed by driving the semiconductor out of thermal equilibrium and therefore requires making assumptions on the charge transport properties of the material under examination. This entanglement of DOS and charge transport models is unfavorable since transport mechanisms in organic semiconductors are themselves still subject of debate. To avoid this, we propose an alternative approach which is based on populating and probing the DOS by means of capacitive coupling in Metal Insulator Semiconductors (MIS) structures while keeping the semiconductor in thermal equilibrium. Assuming a Gaussian shape, we extract the DOS width by numerical fitting of experimental Capacitance-Voltage curves, exploiting the fact that the DOS width affects the spatial distribution of accumulated charge carriers which in turn concurs to define the MIS capacitance. The proposed approach is successfully tested on two benchmark semiconducting polymers, one of n-type and one of p-type and it is validated by verifying the robustness of the extraction procedure with respect to varying the insulator electrical permittivity. Finally, as an example of the usefulness and effectiveness of our approach, we study the static characteristics of thin film transistors based on the aforementioned polymers in the framework of the Extended Gaussian Disorder transport model. Thanks to the extracted DOS widths, the functional dependence of current on the gate voltage is nicely predicted and physical insight on transistor operation is achieved.

Assessing the width of Gaussian density of states in organic semiconductors

DE FALCO, CARLO;NATALI, DARIO ANDREA NICOLA
2015-01-01

Abstract

The Density of States (DOS) is an ingredient of critical importance for the accurate physical understanding of the optoelectronic properties of organic semiconductors. The disordered nature of this class of materials, though, renders the task of determining the DOS far from trivial. Its extraction from experimental measurements is often performed by driving the semiconductor out of thermal equilibrium and therefore requires making assumptions on the charge transport properties of the material under examination. This entanglement of DOS and charge transport models is unfavorable since transport mechanisms in organic semiconductors are themselves still subject of debate. To avoid this, we propose an alternative approach which is based on populating and probing the DOS by means of capacitive coupling in Metal Insulator Semiconductors (MIS) structures while keeping the semiconductor in thermal equilibrium. Assuming a Gaussian shape, we extract the DOS width by numerical fitting of experimental Capacitance-Voltage curves, exploiting the fact that the DOS width affects the spatial distribution of accumulated charge carriers which in turn concurs to define the MIS capacitance. The proposed approach is successfully tested on two benchmark semiconducting polymers, one of n-type and one of p-type and it is validated by verifying the robustness of the extraction procedure with respect to varying the insulator electrical permittivity. Finally, as an example of the usefulness and effectiveness of our approach, we study the static characteristics of thin film transistors based on the aforementioned polymers in the framework of the Extended Gaussian Disorder transport model. Thanks to the extracted DOS widths, the functional dependence of current on the gate voltage is nicely predicted and physical insight on transistor operation is achieved.
2015
Capacitance-Voltage measurement; Density of states; Metal-insulator-semiconductor; Organic Semiconductors; Organic thin film transistor; MIS devices; Semiconducting organic compounds; Semiconductor insulator boundaries; Thin film transistors; Thin films
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1566119914005473-main.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri
Assessing the width of Gaussian density of states in organic semiconductors_11311-881396_De Falco.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/881396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 36
social impact