In this work, we present a methodology to monitor the state of damage- or crack-containing flexible plates through low-cost, commercial off-the-shelf MEMS accelerometers. Under quasi-static, time-varying loading conditions we track the evolution of the damaged zone (e.g., the length of an inner crack) accounting for the drift in the compliance of the specimens, measured by means of the magnitude of the load-induced rotation at MEMS position. We then validate this health monitoring methodology, showing that it turns out to be sensitive to the damage and provides results in good accordance with theoretical findings. Next, we propose a technique to optimally deploy the MEMS sensors over the plate. Referring to an isotropic square plate containing damaged zones of reduced bending stiffness, we numerically investigate the sensitivity of the load-induced state (in terms of out-of-plane displacement and rotation of the normal to the mid-plane) to the position of the damaged area, and we adopt a constrained topology optimisation tool to determine the best sensor deployment to efficiently sense the damage.
Smart sensing of damage in flexible plates through MEMS
MARIANI, STEFANO;CAIMMI, FRANCESCO;BRUGGI, MATTEO;
2014-01-01
Abstract
In this work, we present a methodology to monitor the state of damage- or crack-containing flexible plates through low-cost, commercial off-the-shelf MEMS accelerometers. Under quasi-static, time-varying loading conditions we track the evolution of the damaged zone (e.g., the length of an inner crack) accounting for the drift in the compliance of the specimens, measured by means of the magnitude of the load-induced rotation at MEMS position. We then validate this health monitoring methodology, showing that it turns out to be sensitive to the damage and provides results in good accordance with theoretical findings. Next, we propose a technique to optimally deploy the MEMS sensors over the plate. Referring to an isotropic square plate containing damaged zones of reduced bending stiffness, we numerically investigate the sensitivity of the load-induced state (in terms of out-of-plane displacement and rotation of the normal to the mid-plane) to the position of the damaged area, and we adopt a constrained topology optimisation tool to determine the best sensor deployment to efficiently sense the damage.File | Dimensione | Formato | |
---|---|---|---|
IJMRS020105 preprint.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.