Fuel cells are electrochemical power generation system which may achieve high energy efficiencies with environmentally friendly emissions. Among the different types, Proton Exchange Membrane fuel cells (PEMFC) seem at present one of the most promising choices. A very important component of a PEMFC is the gas diffusion layer (GDL), which has the primary role of managing water in the cell, allowing reactant gases transport to the catalyst layer while keeping the membrane correctly hydrated and preventing electrode flooding. Therefore, GDLs have to be porous and very hydrophobic. Carbon clothes or carbon papers coated with a hydrophobizing agent ??? typically a fluoropolymer ??? are used. Given the complex chemistry and morphology of the GDLs, wettability analyses on them present some critical issues when using the conventional contact angle measurement techniques. In this paper, the deposition of a drop on a GDL (produced using polytetrafluoroethylene-co-perfluoroalcoxy vinyl ether as the fluorinated polymer) was investigated by means of micro computed tomography (microCT) and numerical simulation. The microCT facility operational at the University of Bergamo was used to acquire a 3D tomography of a water drop deposed on a sample GDL. The reconstructed drop dataset allows thorough understanding of the real drop shape, of its contact area and contact line. The GDL dataset was used to create a realistic mesh for the numerical simulation of the drop deposition, which was performed using the OpenFOAM® interFOAM solver.

Micro computed tomography and CFD simulation of drop deposition on gas diffusion layers

GUILIZZONI, MANFREDO GHERARDO;
2014-01-01

Abstract

Fuel cells are electrochemical power generation system which may achieve high energy efficiencies with environmentally friendly emissions. Among the different types, Proton Exchange Membrane fuel cells (PEMFC) seem at present one of the most promising choices. A very important component of a PEMFC is the gas diffusion layer (GDL), which has the primary role of managing water in the cell, allowing reactant gases transport to the catalyst layer while keeping the membrane correctly hydrated and preventing electrode flooding. Therefore, GDLs have to be porous and very hydrophobic. Carbon clothes or carbon papers coated with a hydrophobizing agent ??? typically a fluoropolymer ??? are used. Given the complex chemistry and morphology of the GDLs, wettability analyses on them present some critical issues when using the conventional contact angle measurement techniques. In this paper, the deposition of a drop on a GDL (produced using polytetrafluoroethylene-co-perfluoroalcoxy vinyl ether as the fluorinated polymer) was investigated by means of micro computed tomography (microCT) and numerical simulation. The microCT facility operational at the University of Bergamo was used to acquire a 3D tomography of a water drop deposed on a sample GDL. The reconstructed drop dataset allows thorough understanding of the real drop shape, of its contact area and contact line. The GDL dataset was used to create a realistic mesh for the numerical simulation of the drop deposition, which was performed using the OpenFOAM® interFOAM solver.
2014
JOURNAL OF PHYSICS. CONFERENCE SERIES
micro computed tomography; CFD simulation; gas diffusion layers; fuel cells; drop
File in questo prodotto:
File Dimensione Formato  
IOP_2014_uCT_CFD.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/880355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact