Purpose - The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor blades is a very challenging task in the project of this type of aircraft. Design/methodology/approach - Tiltrotor blades have to give good performance both in helicopter and aeroplane modes. According to the design parameters (the chords, the twists and the airfoils along the blade), as the optimization objectives are different from one operating condition to another, the blade is the result of a multi-objective constrained optimization based on a controlled elitist genetic algorithm founded on the NSGA-II algorithm. The optimization process uses a BEMT solver to compute rotor performance. To avoid negative effects due to compressibility losses in aeroplane mode, the blade shape has been refined following the normal Mach number criterion. Findings - It has been found that the optimized rotor blade gives good performance both in terms of figure of merit and propulsive efficiency if compared with experimental data of existing rotor (ERICA tiltrotor) and propeller (NACA high-speed propeller). Practical implications - The optimization procedure described in this paper for the design of tiltrotor blades can be efficiently used for the aerodynamic design of helicopter rotors and aircraft propellers of all typology. Originality/value - In this work, advanced methodologies have been used for the aerodynamics design of a proprotor optimized for an aircraft which belongs to the innovative typology of high-performance tiltwing tiltrotor aircraft.

Aerodynamic Blade Design with Multi-Objective Optimization for a Tiltrotor Aircraft

DROANDI, GIOVANNI;GIBERTINI, GIUSEPPE
2015

Abstract

Purpose - The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor blades is a very challenging task in the project of this type of aircraft. Design/methodology/approach - Tiltrotor blades have to give good performance both in helicopter and aeroplane modes. According to the design parameters (the chords, the twists and the airfoils along the blade), as the optimization objectives are different from one operating condition to another, the blade is the result of a multi-objective constrained optimization based on a controlled elitist genetic algorithm founded on the NSGA-II algorithm. The optimization process uses a BEMT solver to compute rotor performance. To avoid negative effects due to compressibility losses in aeroplane mode, the blade shape has been refined following the normal Mach number criterion. Findings - It has been found that the optimized rotor blade gives good performance both in terms of figure of merit and propulsive efficiency if compared with experimental data of existing rotor (ERICA tiltrotor) and propeller (NACA high-speed propeller). Practical implications - The optimization procedure described in this paper for the design of tiltrotor blades can be efficiently used for the aerodynamic design of helicopter rotors and aircraft propellers of all typology. Originality/value - In this work, advanced methodologies have been used for the aerodynamics design of a proprotor optimized for an aircraft which belongs to the innovative typology of high-performance tiltwing tiltrotor aircraft.
Aerodynamic; Blade design; Multi-objective optimization; Tiltrotor
File in questo prodotto:
File Dimensione Formato  
DROAG01-15.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri
DROAG_OA_04-15.pdf

embargo fino al 01/03/2015

Descrizione: Paper open access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/877554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 9
social impact